БУКА УСЛЕД КОРОНЕ НА НАДЗЕМНИМ ВИСОКОНАПОНСКИМ ВОДОВИМА: СТАТУС ПРОБЛЕМА У СВЕТУ

УПРAВЉAЊE И TEЛEКOMУНИКAЦИJE У EЛEКTРOEНEРГETСКOM СИСTEMУ / 20. симпoзијум CIGRE Србиja (188-197)

АУТОР(И) / AUTHOR(S): Ива Салом, Владимир Челебић, Миленко Кабовић, Анка Кабовић, Јованка Гајица, Дејан Тодоровић, Небojша Петровић, Нада Цуровић

Е-АДРЕСА / E-MAIL: iva.salom@pupin.rs

Download Full Pdf   

DOI: 10.46793/CIGRE20S.188S

САЖЕТАК / ABSTRACT:

У складу са светским еколошким тредовима, у оквиру кога је и решавање проблема заштите од буке, проблем буке која потиче од високонапонских надземних водова је поново постао актуелан у свету. У овом прегледном раду је разматрана бука која се јавља услед короне, као главног извора буке на високонапонским надземним водовима. Дат је опис проблема уз тренутно стање решености и испитивања у свету, као полазна основа за даља истраживања с циљем утврђивања јасне методологије решавања, односно спречавања овог проблема у Републици Србији, а и шире.

КЉУЧНЕ РЕЧИ / KEYWORDS:

високонапонски надземни водови, корона, бука

ЛИТЕРАТУРА / REFERENCES:

  • World Health Organization (WHO), “Night Noise Guidelines for Europe,” 2009
  • World Health Organization (WHO), “Environmental Noise Guidelines for the Europe Region,” 2011
  • P.S. Maruvada, “Corona Performance of High Voltage Transmission Lines,” Taylor & Francis Group, London, UK, 2000
  • F. Kiessling, P. Nefzger, J.F. Nolasco, U. Kaintzyk, “Overhead Power Lines – Planning, Design, Construction,” Springer-Verlag Berlin Heidelberg 2003
  • EPRI Transmission Lines Reference Book – 345 kV and Above, 2nd ed., EPRI, Palo Alto California, USA, 1982
  • EPRI AC Transmission Line Reference Book—200 kV and Above, EPRI, Paolo Alto California, 3rd ed.,Final report, December 2005
  • ESKOM Holdings Ltd, T. Pillay, S. Bisnath “The Planning, Design and Construction of Overhead Power Lines, 132 kV & above,” Crown Publications cc, Johannesburg, February 2005
  • CIGRÉ Technical Brochure 278 „ The Influence of Line Configuration on Environment Impacts of Electrical Origin – Principles of Overhead Line Design,” CIGRE Working Group B2.06, 2005
  • IEEE Std. P1863-2019 – IEEE Guide for Overhead AC Transmission Line Design, May 2020
  • D.E. Perry, “An Analysis of Transmission Line Audible Noise Levels Based upon Field and Three-Phase Test Line Measurements,” IEEE Trans. Power App. Syst., PAS-91. pp. 857-865, May/June 1972
  • N. Kolcio, B. Ware, R. Zagier, V. Chartier, and F. Dietrich, “The apple grove 750 kV project statistical analysis of audible noise performance of conductors at 775 kv,” IEEE Trans. Power App. Syst., Vol. PAS- 93, No. 3, pp. 831–840, May 1974.
  • R.J. Wells, “Subjective Analysis of the Noise from High Voltage Transmission Lines,” Proceedings of a Workshop on Power Line Noise as Related to Psychoacoustics, IEEE Publication 74CH0967-0-PWR, 1974
  • J.A. Molino, G.A. Zerdy, N.D. Lerner, D.L. Harwood, and S.G. Tremaine, “Use of the ‘Acoustic Menu’ in Assessing Human Response to Audible (Corona) Noise from Electric Transmission Lines,” J. Acoust. Soc.
    America. Vol. 66, No. 5. pp. 1435-1445. November 1979
  • C. Larsson, B. Hallberg, S. Israelsson, “Long term audible noise and radio noise performance of American electric power’s operating 765 kV lines”, IEEE Trans. Power App. Syst., Vol. 98, pp. 1853-1859, 1979
  • V.L. Chartier, R.D. Stearns “Formulas for Predicting Audible Noise From Overhead High Voltage AC and DC Lines,” IEEE PAS-100. pp. 121-129. January 1981
  • N.D. Lerner, J.D. Lehrman, “Annoyance of Noise fom Power Lines,” Human Factors: The Journal of the Human Factors and Ergonomics Society, Vol. 3, No. 23, pp. 273-283, 1981
  • H. Kirkham, W.J. Gajda, “A mathematical model of transmission line audible noise part 1: background and
    model development”, IEEE Trans. Power App. Syst., Vol. 102, pp. 710-717, 1983
  • T. Wszolek, “Diagnostic Symptoms of Corona Audible Noise in Continuous Monitoring Systems,” Technical Note, Archives of Acoustics, No. 36, Vol. 1, pp 151-160, 2011
  • U. Straumann, “Mechanism of the tonal emission from ac high voltage overhead transmission lines,” Journal of Physics D Applied Physics 44125(44), February 2011
  • X. Bian, L. Chen, D. Yu, J.M.K. Alpine, L. Wang, Z. Guan, F. Chen, W. Yao, S. Zhao, “Influence of Aged Conductor Surface Conditions on AC Corona-generated Audible Noise with a Corona Cage,” IEEE Transactions on Dielectrics and Electrical Insulation Vol. 19, No. 6; pp. 2017-2043, December 2012
  • Q. Li, “Acoustic Noise Emitted from Overhead Line Conductors,” PhD Thesis, The University of Manchester, School of Electrical and Electronic Engineering, 2013
    I. Gavranov, Lj. Dimitrov, Z. Milojević, “Corona EHV AC Transmission Lines as Noise Source in the Environment,” 18th International Symposium on Electrical Apparatus and Technologies (SIELA), Bourgas, Bulgaria, May 2014
  • F.A.M. Rizk, G.N. Trinh, “High Voltage Engineering,” Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742, 2014
  • P. Sames, M. Goossens, “Messtechnische Felduntersuchungen zu Koronageräuschen,” Umwelt und Geologie, Lärmschutz in Hessen, Heft 5, 2015
  • U. Schichler, R. Woschitz, A. Pirker, K. Reich, M. Leonhardsberger, O. Oberzaucher, “Audible Noise Performance of OHL Conductor Bundles,” First South East European Regional CIGRÉ Conference, Slovenia, Portorož 7-8 June 2016, SEERC 2016
  • EirGrid Evidence Based Environmental Studies Study 8: Noise, Literature review and evidence based field study on the noise effects of high voltage transmission development, May 2016
  • B. Wan, W. He, C. Pei, X. Wu, Y. Chen, J. Zhang, L. Lan, “Audible noise performance of conductor bundles based on cage test results and comparison with long term data,” Energies 2017, Vol. 10, No. 958, 2017
  • E.A. Piana, A. Donini, R. Spezie, R. Turri, R. Cortina, “Prediction of the audible noise generated by corona discharge on a power transmission line: A model validation. In Proceedings of the 24th International Congress on Sound and Vibration (ICSV), London, UK, 23–27 July 2017; International Institute of Acoustics and Vibrations: Auburn, AL, USA, 2017
  • N. Petrović, „Uticaj prečnika provodnika, broja provodnika po fazi, razmaka u snopu i međufaznog rastojanja 400 kV nadzemnih vodova na naponski gradijent provodnika i jačinu buke usled korone,“ STK B2 Nadzemni vodovi, R B2 03, 33 Savetovanje CIGRE Srbija, Zlatibor, 5 – 8. jun 2017
  • A. Čaršimamović, „Modeliranje napona početka stacionarne korone zasnovano na mjerenjima električnog polja,“ doktorska disertacija, Elektrotehnički fakultet, Univerzitet u Sarajevu, 2018
  • W. He, B. Wan, Y. Liu, X. Liu, S. Huang, Y. Zhang, J. Zhang, “Audible noise spectral characteristics of high-voltage AC bundled conductors at high altitude,” IET Gener Transm Distrib. 2021; 15:1304–1313, 2021
  • E. Stracqualursi, R. Araneo, S. Celozzi. “The Corona Phenomenon in Overhead Lines: Critical Overview of Most Common and Reliable Available Models,” Energies 2021, 14. 6612, pp. 1-33, October 2021
  • IEEE Standard for the Measurement of Audible Noise from Overhead Transmission Lines, IEEE Power and Energy Society, IEEE Std 656-2018 (Revision of IEEE Std 656-1992)
  • SRPS ISO 1996-1 Акустика – Описивање, мерење и оцењивање буке у животној средини – Део 1: Основне величине и процедуре, новембар 2019. (идентичан са EN ISO 1996-1:2016)
  • SRPS ISO 1996-2 Акустика – Описивање, мерење и оцењивање буке у животној средини – Део 2: Одређивање нивоа звуног притиска, новембар 2019. (идентичан са EN ISO 1996-2:2017)
  • SRPS EN 50341-1:2015 Надземни електрични водови наизменичне струје изнад 1 kV —Део 1: Општи захтеви — Заједничке спецификације (идентичан са EN 50341-1:2012)