Chemia Naissensis Volume 5, No.1 (2022) (стр. 47-59)
АУТОР(И) / AUTHOR(S): Maja N. Stanković, Vladimir D. Dimitrijević, Dragan M. Djordjević, Aleksandar Lj. Bojić
Е-АДРЕСА / E-MAIL: maja.stankovic@pmf.edu.rs
DOI: 10.46793/ChemN5.1.47S
САЖЕТАК / ABSTRACT:
Lagenaria vulgaris shell is composed of lignocellulosic material with the ability to bind metal cations due to hydroxyl, carboxylic, lactonic, and phenolic groups present in its structure. To introduce a greater amount of sulphonic groups characterized by significant ion-exchanging capacity, oxidation, and successive sulfonation were performed. The efficiency of biosorbent based on chemically modified Lagenaria vulgaris shell for Cu(II) ion removal from aqueous solution was studied in batch conditions on various initial pHs. Results showed that removal efficiency (95%) did not change in the pH range from 2.0 to 5.0.
КЉУЧНЕ РЕЧИ / KEYWORDS:
sulfonation, Lagenaria vulgaris shell, biosorption, Cu(II) ions
ЛИТЕРАТУРА / REFERENCES:
- Ahsan, A., Islam, T., Imam, M. A., Hyder, A.H.M. G., Jabbari, V., Dominguez, N., & Noveron, J. C. (2018). Biosorption of bisphenol A and sulfamethoxazole from water using sulfonated coffee waste: Isotherm, kinetic and thermodynamic studies. Journal of Environmental Chemical Engineering, 6(5), 6602-6611.
- Akpomie, K. G., & Conradie, J. (2020). Banana peel as a biosorbent for the decontamination of water pollutants a review. Environmental Chemistry Letters, 18, 1085–1112.
- Alothman, Z. A, Bahkali, A. H., Khiyami, M. A., Alfadul, S. M., Wabaidur, S. M., Alam, M., & Alfarhan, B. Z. (2020). LoLow-costiosorbents from fungi for heavy metals removal from wastewater. Separation Science and Technology, 55(10), 1766-1775.
- Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361-377.
- Bezerra, R. D.S., Teixeira, P. R. S., Teixeira, A. S. N. M., Eiras, C., Osajima, J. A., & Silva Filho, E. C. (2015). Chemical functionalization of cellulosic materials – main reactions and applications in the contaminants removal of aqueous medium. In M. Poletto, H. L. Ornaghi Jr. (Eds.), Cellulose – Fundamental Aspects and Current Trends, Rijeka: InTech.
- Bojić, D., Nikolić, G, Mitrović, J., Radović, M., Petrović, M., Marković, D., & Bojić, A. (2016). Kinetic, equilibrium and thermodynamic studies of Ni(II) ions sorption on sulfuric acid treated Lagenaria vulgaris shell. Chemical Industry & Chemical Engineering Quarterly, 22(3), 235-247.
- Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145-155.
- Das, N., Vimala, R., & Karthika, P. (2008). Biosorption of heavy metals—an overview. Indian Journal of Biotechnology, 7, 159–169.
- Hofreiter, B. T., Alexander, B. H., & Wolff, I. A. (1955). Rapid estimation of dialdehyde content of periodate oxystarch through quantitative alkali consumption. Analytical Chemistry, 27(12), 1930–1931.
- Iqbal, M., Saeed, A., & Zafar, S. I. (2009). FTIR spectrophotometry, kinetics, and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ by mango peel waste. Journal of Hazardous Materials, 164, 161-171.
- Karaouzas, I., Kapetanaki, N., Mentzafou, A. Kanellopoulos T. D., & Skoulikidis, N. (2021). Heavy metal contamination status in Greek surface waters: a review with application and evaluation of pollution indices. Chemosphere, 263, 128192.
- Kim, U. J., Kuga, S., Wada, M., Okano, T., & Kondo, T. (2000). Periodate oxidation of crystalline cellulose. Biomacromolecules, 1(3), 488-492.
- Kim, U. J., Kuga, S., & Wada, M., (2003). Solubilization of dialdehyde cellulose by hot water. Carbohydrate Polymers, 56(1), 7-10.
- Kurniawan, T. A., Chan, G. Y. S., Lo, W. H., & Babel S. (2005). Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Science of the Total Environment, 366(2–3), 409-426.
- Ljupković, R. B., Mitrović, J., Radović, M., Kostić, M., Bojić, D., Mitić-Stojanović, D. L., & Bojić, A. Lj. (2011). Removal of Cu(II) ions from water using sulphuric acid-treated Lagenaria vulgaris shell (Cucurbitaceae). Biologica Nyssana, 2(2), 85-89.
- Mitić-Stojanović D. L., Zarubica, A., Purenović, M., Bojić, D., Anđelković, T., & Bojić, A. (2011). Biosorptive removal of Pb2+, Cd2+, and Zn2+ ions from water by Lagenaria vulgaris shell. Water SA, 37(3), 303-312.
- Ozer, D., Dursun, G., & Ozer, A. (2007). Methylene blue adsorption from aqueous solution by dehydrated peanut hull. Journal of Hazardous Materials, 144, 171-179.
- Rajalaxmi, D., Jiang, N., Leslie, G., & Ragauskas, A. J. (2010). Synthesis of novel water-soluble sulfonated cellulose. Carbohydrate Research, 345(2), 284-290.
- Shet, R. T. (1996). Sulfonated cellulose and method of preparation. US5522967 A.
- Shet, R. T., & Wallajapet, P. R. R. (1997). Manufacture of sulfonated cellulose with improved absorbent properties. US 5703225.
- Stanković, M. N., Krstić, N. S., Mitrović, J. Z., Najdanović, S. M., Petrović, M. M., Bojić, D. V., Dimitrijević, V. D., & Bojić A. Lj. (2016). Biosorption of copper(II) ions by methyl-sulfonated Lagenaria vulgaris shell: kinetic, thermodynamic and desorption studies. New Journal of Chemistry, 40(3), 2126-2134.
- Suopajarvi, T., Liimatainen, H., Karjalainen, M., Upola, H., & Niinimaki, J. (2015). Lead adsorption with sulfonated wheat pulp nanocelluloses. Journal of Water Process and Engineering, 5, 136-142.
- Theophanides, T., & Anastassopoulou, J. (2002). Copper and carcinogenesis. Critical Reviews in Oncology/Haematology, 42, 57-64.
- Yuen, C.W.M., Ku, S.K.A., Choi, P.S.R., Kan, C.W. & Tsang, S.Y. (2005). Determining Functional Groups of Commercially Available Ink-Jet Printing Reactive Dyes Using Infrared Spectroscopy. Research Journal of Textile and Apparel, 9(2), 26-38.
- Wang, X., Fang, G., Hu, C., & Du, T. (2008). Application of ultrasonic waves in activation of microcrystalline cellulose. Journal of Applied Polymer Science, 109(5), 2762-2767.
- Zhang, J., Jiang, N., Dang, Z., Elder, T. J., & Ragauskas, A. J. (2008). Oxidation and sulfonation of cellulosic. Cellulose, 15, 489-496.