The Importance of Chemometrics in Drug Discovery from Medicinal Plants

2nd International Conference on Chemo and Bioinformatics ICCBIKG 2023 (2-5)

AUTOR(I) / AUTHOR(S): Rudolf Bauer

E-ADRESA / E-MAIL: 

Download Full Pdf   

DOI: 10.46793/ICCBI23.002B

SAŽETAK / ABSTRACT:

Drug discovery from medicinal plants has always been a longstanding and fruitful endeavor in the quest for novel therapeutic agents. Chemometric techniques, such as multivariate data analysis, enable the systematic analysis of complex chemical profiles obtained from plant extracts and correlation with activity. Compounds exhibiting high correlations in orthogonal projections to latent structures discriminant analysis (OPLS-DA) of pharmacological and MS data, are most promising for the identification of active constituents. Feature-based molecular networking within the Global Natural Product Social Molecular Networking (GNPS) helps to identify interesting compound clusters. Several examples are presented which demonstrate how these methods can be applied in drug discovery from medicinal plants.

KLJUČNE REČI / KEYWORDS:

Medicinal plants, LC-MS, metabolomics, chemometrics, drug discovery

LITERATURA / REFERENCES:

  • Newman DJ, Cragg GM. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J Nat Prod. 83(3) (2020) 770-803.
  • Sharma B, Yadav DK. Metabolomics and Network Pharmacology in the Exploration of the Multi-Targeted Therapeutic Approach of Traditional Medicinal Plants. Plants 11(23) (2022) 3243.
  • Ren, J. L., Yang, L., Qiu, S., Zhang, A. H., Wang, X. J. Efficacy evaluation, active ingredients, and multitarget exploration of herbal medicine. Trends in endocrinology and metabolism: TEM, 34(3) (2023) 146–157.
  • Guy, C., Kopka, J., Moritz, T. Plant metabolomics coming of age. Physiologia plantarum, 132(2) (2008) 113–116.
  • Guo, S., Qiu, S., Cai, Y., Wang, Z., Yang, Q., Tang, S., Xie, Y., Zhang, A. Mass spectrometry- based metabolomics for discovering active ingredients and exploring action mechanism of herbal medicine. Frontiers in chemistry 11 (2023)
  • Waltenberger, B., Atanasov, A. G., Heiss, E. H., Bernhard, D., Rollinger, J. M., Breuss, J. M., Schuster, D., Bauer, R., Kopp, B., Franz, C., Bochkov, V., Mihovilovic, M. D., Dirsch, M., Stuppner, H. Drugs from nature targeting inflammation (DNTI): a successful Austrian interdisciplinary network project. Monatsh Chemie, 147 (2016) 479-491.
  • Pferschy-Wenzig, E. M., Ortmann, S., Atanasov, A. G., Hellauer, K., Hartler, J., Kunert, O., Gold-Binder, M., Ladurner, A., Heiß, E. H., Latkolik, S., Zhao, Y. M., Raab, P., Monschein, M., Trummer, N., Samuel, B., Crockett, S., Miao, J. H., Thallinger, G. G., Bochkov, V., Dirsch, M., Bauer, R. Characterization of Constituents with Potential Anti- Inflammatory Activity in Chinese Lonicera Species by UHPLC-HRMS Based Metabolite Profiling. Metabolites, 12(4) (2022) 288.
  • Nikzad-Langerodi, R., Ortmann, S., Pferschy-Wenzig, E. M., Bochkov, V., Zhao, M., Miao, J. H., Saukel, J., Ladurner, A., Heiss, E. H., Dirsch, V. M., Bauer, R., Atanasov, A. G. Assessment of anti-inflammatory properties of extracts from Honeysuckle (Lonicera sp. L., Caprifoliaceae) by ATR-FTIR spectroscopy. Talanta 175 (2017) 264–272.
  • Nöst, X., Pferschy-Wenzig, E. M., Nikles, S., He, X., Fan, D., Lu, A., Yuk, J., Yu, K., Isaac, G., Bauer, R. Identification of Constituents Affecting the Secretion of Pro-Inflammatory Cytokines in LPS-Induced U937 Cells by UHPLC-HRMS-Based Metabolic Profiling of the Traditional Chinese Medicine Formulation Huangqi Jianzhong Tang. Molecules (Basel, Switzerland), 24(17) (2019).
  • Tian J, Yan S, Wang H, Zhang Y, Zheng Y, Wu H, Li X, Gao Z, Ai Y, Gou X, Zhang L, He L, Lian F, Liu B, Tong X. Hanshiyi Formula, a medicine for Sars-CoV2 infection in China, reduced the proportion of mild and moderate COVID-19 patients turning to severe status: A cohort study. Pharmacological research 161 (2020)
  • Nothias, L. F., Petras, D., Schmid, R., Dührkop, K., Rainer, J., Sarvepalli, A., Protsyuk, I., Ernst, M., Tsugawa, H., Fleischauer, M., Aicheler, F., Aksenov, A. A., Alka, O., Allard, M., Barsch, A., Cachet, X., Caraballo-Rodriguez, A. M., Da Silva, R. R., Dang, T., Garg, N., … Dorrestein, P. C. Feature-based molecular networking in the GNPS analysis environment. Nature methods, 17(9) (2020) 905–908.