BRZA I JEDNOSTAVNA SINTEZA CoAu/rGO NANOKOMPOZITA ZA DETEKCIJU As3+ JONA U VODENIM RASTVORIMA

54. godišnja konferencija o aktuelnim problemima korišćenja i zaštite voda (2025) [269-274 str.]

AUTHOR(S) / AUTOR(I): Aleksandar M. Đorđević , Kristina Radinović , Jadranka Milikić , Nemanja Gavrilov , Dubravka Relić , Dalibor Stanković , Biljana Šljukić 

Download Full Pdf   

DOI: 10.46793/VODA25.261DJ

ABSTRACT / SAŽETAK:

Nanokompozit CoAu/rGO sintetisan je jednostavnom  metodom deponovanjem nanočestica kobalta (Co) i zlata (Au) na redukovani grafen-oksid (rGO) i ispitan kao materijal za detekciju As3+ jona u vodi. U optimizovanim kiselim uslovima, elektroda je pokazala jasno definisan pik oksidacije As0 u As3+ i visoku osetljivost. Detekcija je uspešno ostvarena u širokom opsegu koncentracija (30–1000 µM), sa dve oblasti linearnosti i odgovarajućom granicom detekcije. Elektroda je pokazala dobar elektrohemijski odziv u realnim uzorcima, što potvrđuje njenu primenljivost u analizi voda.

KEYWORDS / KLJUČNE REČI:

elektrohemijska detekcija, arsen, kobalt, zlato, grafen-oksid

ACKNOWLEDGEMENT / PROJEKAT:

Autori žele da se zahvale Ministarstvu nauke, tehnološkog razvoja i inovacija Republike Srbije (ugovori br. 451-03-136/2025-03/200168, 451-03-137/2025-03/200146, 451-03-136/2025-03/200146 i 451-03-136/2025-03/200051).

REFERENCES / LITERATURA:

  • P. Carrera, P.J. Espinoza-Montero, L. Fernández, H. Romero, J. Alvarado, Electrochemical determination of arsenic in natural waters using carbon fiber ultra-microelectrodes modified with gold nanoparticles, Talanta 166 (2017) 198–206. https://doi.org/10.1016/j.talanta.2017.01.056.
  • C. Zhou, M. Yang, S.-S. Li, T.-J. Jiang, J.-H. Liu, X.-J. Huang, X. Chen, Electrochemically etched gold wire microelectrode for the determination of inorganic arsenic, Electrochimica Acta 231 (2017) 238–246. https://doi.org/10.1016/j.electacta.2017.01.184.
  • H. Xu, L. Zeng, S. Xing, G. Shi, J. Chen, Y. Xian, L. Jin, Highly ordered platinum-nanotube arrays for oxidative determination of trace arsenic(III), Electrochemistry Communications 10 (2008) 1893–1896. https://doi.org/10.1016/j.elecom.2008.09.037.
  • D. Jovanovic, B. Jakovljević, Z. Rašić-Milutinović, K. Paunović, G. Peković, T. Knezević, Arsenic occurrence in drinking water supply systems in ten municipalities in Vojvodina Region, Serbia, Environmental Research 111 (2011) 315–318. https://doi.org/10.1016/j.envres.2010.11.014.
  • K. Radinović, J. Milikić, U. Stamenović, V. Vodnik, M. Otoničar, S. Škapin, B. Šljukić, Tailoring gold-conducting polymer nanocomposites for sensors applications: Proof of concept for As(III) sensing in aqueous media, Synthetic Metals 278 (2021) 116834. https://doi.org/10.1016/j.synthmet.2021.116834.
  • C.M.T. Nguyen, K.L.T. Nguyen, V.V. Nguyen, H.A. Nguyen, V.H. Le, V.V. Pham, L.T.N. Huynh, T.H. Nguyen, Fabrication of Au nano particles/Fluorine doped Tin Oxide coated glass electrodes via electrophoretic deposition for high-sensitive arsenic (III) detection, Thin Solid Films 779 (2023) 139938. https://doi.org/10.1016/j.tsf.2023.139938.
  • J. Zhang, X. Sun, J. Wu, Heavy Metal Ion Detection Platforms Based on a Glutathione Probe: A Mini Review, Applied Sciences 9 (2019) 489. https://doi.org/10.3390/app9030489.
  • L. Zhang, X.-R. Chen, S.-H. Wen, R.-P. Liang, J.-D. Qiu, Optical sensors for inorganic arsenic detection, TrAC Trends in Analytical Chemistry 118 (2019) 869–879. https://doi.org/10.1016/j.trac.2019.07.013.
  • K. Mao, H. Zhang, Z. Wang, H. Cao, K. Zhang, X. Li, Z. Yang, Nanomaterial-based aptamer sensors for arsenic detection, Biosensors and Bioelectronics 148 (2020) 111785. https://doi.org/10.1016/j.bios.2019.111785.
  • X. Xu, X. Niu, X. Li, Z. Li, D. Du, Y. Lin, Nanomaterial-based sensors and biosensors for enhanced inorganic arsenic detection: A functional perspective, Sensors and Actuators B: Chemical 315 (2020) 128100. https://doi.org/10.1016/j.snb.2020.128100.
  • D.Q. Hung, O. Nekrassova, R.G. Compton, Analytical methods for inorganic arsenic in water: a review, Talanta 64 (2004) 269–277. https://doi.org/10.1016/j.talanta.2004.01.027.
  • K. Radinović, J. Milikić, A. Balčiūnaitė, Z. Sukackienė, M. Bošković, L. Tamašauskaitė-Tamašiūnaitė, B. Šljukić, Low Au-content CoAu electrodes for environmental applications, RSC Adv. 12 (2022) 26134–26146. https://doi.org/10.1039/D2RA04828K.
  • K. Radinović, J. Milikić, D.M.F. Santos, A. Saccone, S. De Negri, B. Šljukić, Electroanalytical sensing of trace amounts of As(III) in water resources by Gold–Rare Earth alloys, Journal of Electroanalytical Chemistry 872 (2020) 114232. https://doi.org/10.1016/j.jelechem.2020.114232.
  • K. Radinović, J. Milikić, N. Gavrilov, D. Stanković, A. Basak, Ö. Metin, B. Šljukić, Analytical Performance and Stability Studies of CoAu/rGO-Based Electrochemical Sensor for Arsenic(III) Detection in Aqueous Solutions, Talanta (2025) 128305. https://doi.org/10.1016/j.talanta.2025.128305.
  • M.B. Gumpu, M. Veerapandian, U.M. Krishnan, J.B.B. Rayappan, Electrochemical sensing platform for the determination of arsenite and arsenate using electroactive nanocomposite electrode, Chemical Engineering Journal 351 (2018) 319–327. https://doi.org/10.1016/j.cej.2018.06.097.
  • Z. Guo, M. Yang, X.-J. Huang, Recent developments in electrochemical determination of arsenic, Current Opinion in Electrochemistry 3 (2017) 130–136. https://doi.org/10.1016/j.coelec.2017.08.002.
  • E. Munoz, S. Palmero, Analysis and speciation of arsenic by stripping potentiometry: a review, Talanta 65 (2005) 613–620. https://doi.org/10.1016/j.talanta.2004.07.034.
  • P. Xiao, G. Zhu, X. Shang, B. Hu, B. Zhang, Z. Tang, J. Yang, J. Liu, An Fe-MOF/MXene-based ultra-sensitive electrochemical sensor for arsenic(III) measurement, Journal of Electroanalytical Chemistry 916 (2022) 116382. https://doi.org/10.1016/j.jelechem.2022.116382.
  • S. Dutta, G. Strack, P. Kurup, Gold nanostar electrodes for heavy metal detection, Sensors and Actuators B: Chemical 281 (2019) 383–391. https://doi.org/10.1016/j.snb.2018.10.111.
  • C. Sullivan, D. Lu, E. Brack, C. Drew, P. Kurup, Voltammetric codetection of arsenic(III) and copper(II) in alkaline buffering system with gold nanostar modified electrodes, Analytica Chimica Acta 1107 (2020) 63–73. https://doi.org/10.1016/j.aca.2020.02.015.
  • M. Amouzadeh Tabrizi, A. Tavakkoli, V. Dhand, K.Y. Rhee, S.-J. Park, Eco-friendly one-pot synthesis of gold decorated reduced graphene oxide using beer as a reducing agent, Journal of Industrial and Engineering Chemistry 20 (2014) 4327–4331. https://doi.org/10.1016/j.jiec.2014.01.040.
  • I. Saikia, S. Sonowal, M. Pal, P.K. Boruah, M.R. Das, C. Tamuly, Biosynthesis of gold decorated reduced graphene oxide and its biological activities, Materials Letters 178 (2016) 239–242. https://doi.org/10.1016/j.matlet.2016.05.011.
  • R. Krishna, D.M. Fernandes, C. Dias, J. Ventura, E. Venkata Ramana, C. Freire, E. Titus, Novel synthesis of Ag@Co/RGO nanocomposite and its high catalytic activity towards hydrogenation of 4-nitrophenol to 4-aminophenol, International Journal of Hydrogen Energy 40 (2015) 4996–5005. https://doi.org/10.1016/j.ijhydene.2014.12.045.