17th International Conference on Fundamental and Applied Aspects of Physical Chemistry (Proceedings, Volume II) (2024) [P-01-P, pp. 673-676]
AUTHOR(S) / АУТОР(И): Sanja Ostojić
, Darko Micić
and Snežana Zlatanović
Download Full Pdf 
DOI: 10.46793/Phys.Chem24II.673O
ABSTRACT / САЖЕТАК:
Thermal degradation kinetics of dried red cabbage pulp (Brassica oleracea var. capitata F. rubra) has been studied using thermogravimetric analysis. Four stages of degradation were observed in the TGA curves within the temperature range from 25 to 700 °C. The first mass loss corresponds to the evaporation of water, the second and third to the thermal degradation of mono- and disaccharides (fructose, glucose, sucrose) and to the thermal degradation of proteins and fourth weight loss represents the thermal degradation of the cellulose. The kinetic parameters of the thermal degradation process of dried red cabbage, obtained using the Friedman method, were as follows: Ea—activation energy at a conversion degree (α) from 0.1 to 0.9 ranged between 126.5 and 144.6 kJ/mol; lnA—the natural logarithm of the pre-exponential factor ranged from 25.8 to 36.1; k0.5—thermal degradation rate constant at a conversion extent (α) value of 0.5 ranged from 0.293 to 0.725 min⁻¹.
The results were discussed in relation to those obtained for the samples’ proximate chemical composition.
KEYWORDS / КЉУЧНЕ РЕЧИ:
ACKNOWLEDGEMENT / ПРОЈЕКАТ:
This work was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (grant no 451-03-66/2024-03/200051).
REFERENCES / ЛИТЕРАТУРА:
- M. M. Ozcelik, S. Aydin, E. Aydin, G. Ozkan, Food Sci Nutr 12 (2024) 1340–1355.
- K. Sakulnarmrat, D. Wongsrikaew, I. Konczak, LWT 137 (2021) 110473.
- J. H. Kwak, Y. Kim, S. I. Ryu, M. Lee, H. J. Lee, Y. P. Lim, J. K. Paik, Food Sci Nutr 8 (2020) 1898–1903.
- K. Kasarello, I. Köhling, A. Kosowska, K. Pucia, A. Lukasik, A. Cudnoch-Jedrzejewska, L. Paczek, U. Zielenkiewicz, P. Zielenkiewicz, Front Pharmacol 13 (2022).
- J. M. Sankhari, M. C. Thounaojam, R. N. Jadeja, R. V. Devkar, A. V. Ramachandran, J Sci Food Agric 92 (2012) 1688–1693.
- L. De Marchi, L. Salemi, M. Bellumori, R. Chignola, F. Mainente, D. V. Santisteban Soto, I. Fierri, M. Ciulu, G. Zoccatelli, Food Chem 440 (2024) 138272.
- S. Zlatanović, S. Ostojić, D. Micić, S. Rankov, M. Dodevska, P. Vukosavljević, S. Gorjanović, Thermochim Acta 673 (2019) 17–25.
- S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, Thermochim Acta 520 (2011) 1–19.
- S. Vyazovkin, K. Chrissafis, M. L. Di Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, J. Suñol, Thermochim Acta 590 (2014) 1–23.
- M. Drozdowska, T. Leszczyńska, A. Koronowicz, E. Piasna-Słupecka, D. Domagała, B. Kusznierewicz, European Food Research and Technology 246 (2020) 2505–2515.
- N. Xu, C. Lu, T. Zheng, S. Qiu, Y. Liu, D. Zhang, D. Xiao, G. Liu, Mater Des 200 (2021) 109458.
- D. Jagadeesh, D. Jeevan Prasad Reddy, A. Varada Rajulu, J Polym Environ 19 (2011) 248– 253.
- M. Mironova, I. Makarov, L. Golova, M. Vinogradov, G. Shandryuk, I. Levin, Fibers 7 (2019) 84.
- K. Singh, M. Risse, K. C. Das, J. Worley, Journal of Energy Resources Technology, Transactions of the ASME 131 (2009) 0222011–0222016.
- L. Luo, X. Guo, Z. Zhang, M. Chai, M. M. Rahman, X. Zhang, J. Cai, Energy and Fuels 34 (2020) 4874–4881.
- J. R. Prado, S. Vyazovkin, Thermochim Acta 524 (2011) 197–201.