HUMAN HEALTH RISK ASSESSMENT OF ARTIFICIAL SWEETENERS DETECTED IN WELL WATER

17th International Conference on Fundamental and Applied Aspects of Physical Chemistry (Proceedings, Volume II) (2024) [K-11-P, pp. 483-486]  

AUTHOR(S) / AUTOR(I): Eleonora Gvozdić , Ivana Matić Bujagić , Tatjana Đurkić  and Svetlana Grujić

Download Full Pdf   

DOI: 10.46793/Phys.Chem24II.483G

ABSTRACT / SAŽETAK:

Artificial sweeteners are emerging contaminants that are widely detected in natural waters as a result of their widespread use in the food industry and continual release into aquatic ecosystems via municipal wastewater. Recent research has shown that frequent consumption of these compounds can cause negative effects on human health. In this paper, human health risk assessment for possible chronic exposure to sweeteners detected in groundwater wells in Belgrade and the surrounding area was performed. The results showed the widespread presence of acesulfame and sucralose in well water, at concentrations up to 80 ng L–1 and 25 ng L–1, respectively. According to US EPA risk characterization guidance and calculated hazard quotients, the detected levels of sweeteners do not pose a threat to human health. However, the cumulative effect of all ingested sweeteners and other food additives should be considered, as well as their potential carcinogenicity, in future long-term health risk assessments.

KEYWORDS / KLJUČNE REČI:

ACKNOWLEDGEMENT / PROJEKAT:

This work was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (Contracts No. 451-03-66/2024-03/200287 and 451-03-65/2024-03/200135).

REFERENCES / LITERATURA:

  • M. Carocho, P. Morales, I.C.F.R. Ferreira, Food Chem. Toxicol., 107 (2017) 302–317.
  • S. E. Swithers, Trend Endocrinol. Metab., 24 (2013) 432–441.
  • S. M. Praveena, M.S. Cheema, H.-R. Guo, Ecotoxicol. Environ. Saf., 170 (2019) 699–707.
  • J. Luo, Q. Zhang, M. Cao, L. Wu, J. Cao, F. Fang, C. Li, Z. Xue, Q. Feng, Sci. Total Environ., 653 (2019) 1149–1160.
  • I. J. Buerge, H.-R. Kahle, M.D. Müller, T. Poiger, Environ. Sci. Technol., 43 (2009) 4381–4385.
  • M. Wu, Y. Qian, J.M. Boyd, S.E. Hrudey, X.C. Le, X.-F. Li, J. Chromatogr. A, 1359 (2014) 156–161.
  • A. M. Dietrich, Z. Pang, H. Zheng, X. Ma, Chem. Eng. J. Adv., 6 (2021) 100100.
  • E. Gvozdić, I. Matić Bujagić, T. Đurkić, S. Grujić, Microchem. J., 157 (2020) 105071.
  • RAIS, 2024. Chemical Risk Calculator User’s Guide, Land Use Descriptions, Equations, and Technical Documentation. https://rais.ornl.gov/tools/rais_chemical_risk_guide.html (last accessed: May 26, 2024).
  • Risk characterization handbook, Science Policy Council, U.S. Environmental Protection Agency, Washington, DC 20460, https://www.epa.gov/sites/default/files/2015-10/documents/osp_risk_characterization_handbook_2000.pdf (last accessed: May 26, 2024).
  • W. Ens, F. Senner, B. Gygax, G. Schlotterbeck, Anal. Bioanal. Chem., 406 (2014) 2789–2798.
  • L. Wolf, C. Zwiener, M. Zemann, Sci. Total Environ., 430 (2012) 8–19.
  • C. Debras, E. Chazelas, B. Srour, N. Druesne-Pecollo et al., Plos Med., 19 (2022) 1003950.