17th International Conference on Fundamental and Applied Aspects of Physical Chemistry (Proceedings, Volume I) (2024) [H-01-SL, pp. 275-282]
AUTHOR(S) / АУТОР(И): Asli Yüksel
and Yaşar Kemal Recepoğlu 
Download Full Pdf 
DOI: 10.46793/Phys.Chem24I.275Y
ABSTRACT / САЖЕТАК:
Investigating efficient bio-based adsorbents is crucial for lithium (Li) recovery due to the increased demand from electric vehicles and energy storage, making Li a pivotal metal in the 21st century. This study entails the comparison of batch and column mode assessments to determine the efficacy of lithium-capable biosorbents, namely phosphorylated cellulose (FC) and phosphorylated hazelnut shell waste (FHS). Several influencing factors were investigated, such as biosorbent dosage, initial concentration, contact time, and pH. The Langmuir model determined the maximum sorption capacity to be 9.60 mg/g for FC and 7.71 mg/g for FHS at 25°C. Notably, the kinetics of the biosorbents were as rapid as 3 min in achieving Li sorption. Moreover, in a packed bed column, the use of FC and FHS resulted in a threefold increase in sorption capacity under dynamic flow, particularly at lower flow rates. 5% H2SO4 solution proved sufficient to desorb around 100% of Li from the saturated biosorbents.
KEYWORDS / КЉУЧНЕ РЕЧИ:
ACKNOWLEDGEMENT / ПРОЈЕКАТ:
This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK grant no 219M219). The authors express sincere appreciation to Assoc. Prof. Dr. Özgür Arar of Ege University, Chemistry Department, for his generous assistance. Additionally, gratitude is extended to the „Center for Materials Research“ for conducting characterization analyses and the „Environmental Research and Development Center“ for performing ICP-OES analyses at the Integrated Research Center of Izmir Institute of Technology.
REFERENCES / ЛИТЕРАТУРА:
- W. T. Stringfellow and P. F. Dobson, Energies (Basel), 14 (2021) 6805.
- B. Swain, Sep. Purif. Technol., 2017, 172 (2017) 388–403.
- Y. Zhang, J. Liu, Y. Yang, S. Lin, P. Li, Sep. Purif. Technol., 267 (2021) 118613.
- V. Flexer, C. F. Baspineiro, C. I. Galli, Sci. Total Environ., 639 (2018) 1188–1204.
- J. Liu, Y. Zhang, Y. Miao, Y. Yang, P. Li, Ind. Eng. Chem. Res. 60 (2021) 16457–16468.
- Y. Wesselborg, S. Virolainen, T. Sainio, Hydrometallurgy, 202 (2021) 105593.
- H. Peng and Q. Zhao, Adv. Funct. Mater., 31 (2021) 2009430.
- K. Yoshizuka, S. Nishihama, M. Takano, S. Asano, Solvent Extr. Ion Exch., 39 (2021) 604– 621.
- M. R. Awual, M. M. Hasan, J. Iqbal, M. A. Islam, A. Islam, S. Khandaker, A. M. Asiri, M. Rahman, J. Environ. Chem. Eng., 8, (2020) 103591.
- Y. Lee, J. Cha, D. Jung, Chem. Asian J., 16 (2021) 974–980.
- T. Kitamura and H. Wada, Nippon Kaisui Gakkai-Shi, 32 (1978) 78–81.
- F. Qian, B. Zhao, M. Guo, Z. Wu, W. Zhou, Z. Liu, Sep. Purif. Technol., 256 (2021) 117583.
- K. Zhao, B. Tong, X. Yu, Y. Guo, Y. Xie, T. Deng, Chem. Eng. J., 430 (2022) 131423.
- F. Arroyo, J. Morillo, J. Usero, D. Rosado, H. El Bakouri, Desalination, 468 (2019) 114073.
- A. Çiçek, O. Yilmaz, Ö. Arar, J. Serb. Chem. Soc., 83 (2018) 1059–1069.
- X. Luo, B. Guo, J. Luo, F. Deng, S. Zhang, S. Luo, J. Crittenden, ACS Sustain. Chem. Eng., 3, (2015) 460–467.
- H. Günan Yücel, Z. Aksu, T. Usta, S. E. Karatay, G. Dönmez, Prep. Biochem. Biotechnol., 51 (2021) 892–900.
- K. Yabusaki, Google Patents September 28, 2010, Patent No: US 7,803,937 B2, (2010).