CURVATURE-AMPLIFIED DIFFUSIVE INSTABILITY OF AN AUTOCATALYTIC REACTION-DIFFUSION FRONT – AN EXPERIMENTAL STUDY

17th International Conference on Fundamental and Applied Aspects of Physical Chemistry (Proceedings, Volume I) (2024) [D-06-O, pp. 147-150]

AUTHOR(S) / AUTOR(I): Luka Negrojević , Surya Narayan Maharana , Anne De Wit

Download Full Pdf   

DOI: 10.46793/Phys.Chem24I.147N

ABSTRACT / SAŽETAK:

Differences in the diffusive transport of chemical species can give rise to self-organized patterns like Turing stationary structures or cellular fronts. In this contribution, the diffusive instability patterns arising in radially propagating autocatalytic reaction-diffusion fronts are investigated experimentally. Compared to the traditionally studied cellular fronts in the planar geometry, we find a curvature-induced amplification of the amplitude of the front modulation in a radial geometry. Further experimental, theoretical, and numerical studies are being conducted to better understand these findings.

KEYWORDS / KLJUČNE REČI:

ACKNOWLEDGEMENT / PROJEKAT:

The authors thank A. Comolli and F. Brau for fruitful discussions. LN and AD acknowledge the CoPerMix project funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no 956457. SNM and AD thank the Actions de recherche concertées CREDI Programme of ULB for financial support.

REFERENCES / LITERATURA:

  • M.C Cross, & P.C. Hohenberg, P.C. Rev. Mod. Phys. 65 (1993) 851–1112.
  • A. De Wit, Annu. Rev. Fluid Mech. 52 (2020) 531–555.
  • J. D. Murray, Mathematical Biology. vol. 17 (Springer New York, 1989).
  • R. Lefever, O. & Lejeune, Bull. Math. Biol. 59 (1997) 263–294.
  • A. N. Kolmogorov, I. G. Petrovsky, and N. S. Piskunov, Bull. Moscow State Univ. Ser. A: Math. Mech 1(6) (1937) 1-25.
  • D. Horváth, V. Petrov, S. K. Scott, K. & Showalter, J. Chem. Phys. 98 (1993) 6332–6343.
  • Á Tóth, Lagzi, & D. Horváth, J. Phys. Chem. 100 (1996) 14837–14839.
  • Z. Virányi, A. Szommer, Á. Tóth, & D. Horváth, Phys. Chem. Chem. Phys. 006 (2004) 3396– 3401.
  • T. Rica, E. Pópity-Tóth, D. Horváth, & Á. Tóth, Phys. D Nonlinear Phenom. 239 (2010) 831– 837.
  • F. Brau, G. Schuszter, G. & A. De Wit, Phys. Rev. Lett. 118 (2017) 134101.
  • F. Brau, &A. De Wit, J. Chem. Phys. 152 (2020) 054716.
  • A. Comolli, L. Negrojević, F. Brau & A. De Wit, Phys. Chem. Chem. Phys. 25 (2023) 10604–10619.
  • Á. Tóth, D. Horváth, & A. Siska, A. J. Chem. Soc. – Faraday Trans. 93 (1997) 73–76.