ANALYTICAL SOLUTION FOR MULTISTEP SCHEMES IN REACTION KINETICS

17th International Conference on Fundamental and Applied Aspects of Physical Chemistry (Proceedings,Volume I) (2024) [PL-02, pp. 5-12]

AUTHOR(S) / АУТОР(И): Gabor Lente

Download Full Pdf   

DOI: 10.46793/Phys.Chem24I.005L

ABSTRACT / САЖЕТАК:

Exact analytical solutions of a number of multistep kinetic schemes are presented for cases when at least one of the reactions in a sequence is not a simple first order process. These solutions, given by closed formulas, are superior to the commonly used numerical solutions in any system but sometimes necessitate the knowledge of some special functions, which usually appear in the theory of second order ordinary differential equations, e.g. exponential integral function, hypergeometric function, Legendre function, incomplete gamma function. The systems for which these analytical solutions are available usually do not include any reversible elements, with the exception of systems with a reversible reaction that is first order in both directions.

KEYWORDS / КЉУЧНЕ РЕЧИ:

ACKNOWLEDGEMENT / ПРОЈЕКАТ:

The research was funded by project no. RRF-2.3.1-21-2022-00009, titled National Laboratory for Renewable Energy, which has been implemented with the support provided by the Recovery and Resilience Facility of the European Union within the framework of Programme Széchenyi Plan Plus.

REFERENCES / ЛИТЕРАТУРА:

  • Szabó in: Comprehensive Chemical Kinetics, Vol. 2, C. H. Bamford, C. F. H Tipper (Eds.), Elsevier, Amsterdam, 1969.
  • Érdi, J. Tóth, Mathematical Models of Chemical Reactions, Manchester University Press, Manchester, 1989.
  • H. Espenson, Chemical Kinetics and Reaction Mechanisms, 2nd ed, McGraw-Hill, New York, 1995.
  • Lente, I. Fábián, Inorg. Chem., 37 (1998) 4204.
  • Lente, I. Fábián, Inorg. Chem., 38 (1999) 603.
  • Jacob, G. Lente, I. A. Guzei, J. H. Espenson, Inorg. Chem., 38 (1999) 376
  • Lente, J. H. Espenson, Inorg. Chem., 39 (2000) 4809.
  • Lente, J. H. Espenson, Chem. Commun., (2003) 1162.
  • Galajda, G. Lente, I. Fábián, J. Am. Chem. Soc., 129 (2007) 603.
  • M. Gombár, É. Józsa, M. Braun, K. Ősz, Photochem. Photobiol. Sci., 11 (2012) 1592.
  • T. Lehóczki, É. Józsa, K. Ősz, J. Photochem. Photobiol. A Chem., 251 (2013) 63.
  • V. Kiss, G. Lehoczki, K. Ősz, Photochem. Photobiol. Sci., 16 (2017) 519.
  • V. Kiss, K. Ősz, Int. J. Chem. Kinet., 49 (2017) 602.
  • É. Józsa, V. Kiss, K. Ősz, J. Photochem. Photobiol. A Chem., 360 (2018) 166.
  • J. Michnyóckzy, V. Kiss, K. Ősz, J. Photochem. Photobiol. A Chem., 408 (2021) 113110.
  • É. Józsa, L. B. Jenei, T: Kégl, K. Ősz, J. Mol. Struc., 1261 (2022) 132916.
  • J. Z. Hearon, Bull. Math. Biophys., 15 (1953) 121.
  • J. Radcliffe, P. J. Staff, J. Appl. Probab., 6 (1969) 186.
  • J. A. Jacquez, C. P. Simon, SIAM Review, 35 (1993) 43.
  • R. Tóbiás, L. L. Stacho, G. Tasi, J. Math. Chem., 54 (2016) 1863.
  • G. Lente, J. Math. Chem., 53 (2015) 1179.
  • G. Lente, J. Math. Chem., 53 (2015) 1759.
  • G. Lente, J. Math. Chem., 55 (2017) 832.
  • A. P. Paz, ChemRxiv, (2024) 10.26434/chemrxiv-2024-6kdjr.
  • A. P. Paz, ChemRxiv, (2024) 10.26434/chemrxiv-2024-pt550.