PARTICLE DYNAMICS IN INERTIAL MICROFLUIDICS: REVIEW OF FORCES AND CHANNEL DESIGN PRINCIPLES

10th International Congress of the Serbian Society of Mechanics (18-20. 06. 2025, Niš) [pp. 89-98]

AUTHOR(S) / AUTOR(I): Nikola Oluški, Andreja Živkov , Vladimir Kozomora , Maša Bukurov , Slobodan Tašin

Download Full Pdf   

DOI: 10.46793/ICSSM25.089O

ABSTRACT / SAŽETAK:

This paper aims to introduce readers and future researchers to the field of inertial microfluidics, presenting key principles, forces, and practical applications. By analyzing over 40 studies, the work systematizes the basic hydrodynamic mechanisms influencing particle motion in microchannels: inertial lift force, Dean drag force, and centrifugal force. The theoretical framework explains the role of dimensionless parameters, Reynolds number and clogging ratio λ, in determining stable particle positions and separation efficiency. A tabular overview summarizes the performance of each geometry, straight, curved and serpentine, and highlights their strengths and limitations. Major challenges include minimizing clogging in narrow channels, scaling throughput for industrial volumes, and adapting systems for complex biological samples like blood or environmental mixtures for microplastic removal. Future research directions should focus on hybrid geometries combining straight and curved segments to balance resolution and throughput, numerical optimization using machine learning algorithms to predict particle trajectories, and applications in emerging fields such as single-cell analysis or nanomaterial synthesis. By linking theoretical models, experimental validations, and industrial requirements, this paper serves as a practical guide for researchers designing inertial microfluidic systems tailored to specific separation tasks.

KEYWORDS / KLJUČNE REČI:

particle dynamics, inertial microfluidics, separation

ACKNOWLEDGEMENT / PROJEKAT:

This research has been supported by the Ministry of Science, Technological Development and Innovation (Contract No. 451-03-137/2025-03/200156) and the Faculty of Technical Sciences, University of Novi Sad through project “Scientific and Artistic Research Work of Researchers in Teaching and Associate Positions at the Faculty of Technical Sciences, University of Novi Sad 2025” (No. 01-50/295).

REFERENCES / LITERATURA:

  • Simha, “Untersuchungen über die Viskosität von Suspensionen und Lösungen,”
  • Vejlens, “The distribution of leucocytes in the vascular system,”
  • C. G. Johnson and L. R. Taylor, “The development of large suction traps for airborne insects,” Annals of Applied Biology, vol. 43, no. 1, pp. 51–62, Mar. 1955, doi: 10.1111/j.1744-7348.1955.tb02452.x.
  • G. Segré and A. Silberberg, “Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation,” J. Fluid Mech., vol. 14, no. 1, pp. 136– 157, Sep. 1962, doi: 10.1017/S0022112062001111.
  • P. G. Saffman, “The lift on a small sphere in a slow shear flow,” J. Fluid Mech., vol. 22, no. 2, pp. 385–400, Jun. 1965, doi: 10.1017/S0022112065000824.
  • B. P. Ho and L. G. Leal, “Inertial migration of rigid spheres in two-dimensional unidirectional flows,” J. Fluid Mech., vol. 65, no. 2, pp. 365–400, Aug. 1974, doi: 10.1017/S0022112074001431.
  • J. A. Schonberg and E. J. Hinch, “Inertial migration of a sphere in Poiseuille flow,” J. Fluid Mech., vol. 203, pp. 517–524, Jun. 1989, doi: 10.1017/S0022112089001564.
  • E. S. Asmolov, “The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number,” J. Fluid Mech., vol. 381, pp. 63–87, Feb. 1999, doi: 10.1017/S0022112098003474.
  • D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A., vol. 104, no. 48, pp. 18892–18897, Nov. 2007, doi: 10.1073/pnas.0704958104.
  • D. Di Carlo, “Inertial microfluidics,” Lab Chip, vol. 9, no. 21, p. 3038, 2009, doi: 10.1039/b912547g.
  • D. H. Yoon, J. B. Ha, Y. K. Bahk, T. Arakawa, S. Shoji, and J. S. Go, “Size- selective separation of micro beads by utilizing secondary flow in a curved rectangular microchannel,” Lab Chip, vol. 9, no. 1, pp. 87–90, 2009, doi: 10.1039/B809123D.
  • J. M. Martel and M. Toner, “Inertial Focusing in Microfluidics,” Annu. Rev. Biomed. Eng., vol. 16, no. 1, pp. 371–396, Jul. 2014, doi: 10.1146/annurev-bioeng-121813-120704.
  • C. Liu, G. Hu, X. Jiang, and J. Sun, “Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers,” Lab Chip, vol. 15, no. 4, pp. 1168–1177, 2015, doi: 10.1039/C4LC01216J.
  • M. A. Raoufi, H. A. N. Joushani, S. Razavi Bazaz, L. Ding, M. Asadnia, and M. Ebrahimi Warkiani, “Effects of sample rheology on the equilibrium position of particles and cells within a spiral microfluidic channel,” Microfluid Nanofluid, vol. 25, no. 9, p. 75, Sep. 2021, doi: 10.1007/s10404-021-02475-2.
  • D. Ince, H. Turhan, S. Cadirci, and L. Trabzon, “Experimental and numerical study of the effect of the channel curvature angle on inertial focusing in curvilinear microchannels,” Journal of Applied Physics, vol. 132, no. 22, p. 224703, Dec. 2022, doi: 10.1063/5.0117224.
  • A. Amani, A. Shamloo, P. Vatani, and S. Ebrahimi, “Particles Focusing and Separation by a Novel Inertial Microfluidic Device: Divergent Serpentine Microchannel,” Ind. Eng. Chem. Res., vol. 61, no. 38, pp. 14324–14333, Sep. 2022, doi: 10.1021/acs.iecr.2c02451.
  • S. Ebrahimi et al., “Optimizing the design of a serpentine microchannel based on particles focusing and separation: A numerical study with experimental validation,” Sensors and Actuators A: Physical, vol. 358, p. 114432, Aug. 2023, doi: 10.1016/j.sna.2023.114432.
  • A. Wiede, O. Stranik, A. Tannert, and U. Neugebauer, “Microfluidic System for Cell Mixing and Particle Focusing Using Dean Flow Fractionation,” Micro, vol. 3, no. 3, 671–685, Jul. 2023, doi: 10.3390/micro3030047.
  • R. Valani, B. Harding, and Y. Stokes, “Utilizing bifurcations to separate particles in spiral inertial microfluidics,” Physics of Fluids, vol. 35, no. 1, p. 011703, Jan. 2023, doi: 10.1063/5.0132151.
  • R. N. Valani, B. Harding, and Y. M. Stokes, “Inertial particle focusing in fluid flow through spiral ducts: dynamics, tipping phenomena and particle separation,” J. Fluid Mech., vol. 990, p. A13, Jul. 2024, doi: 10.1017/jfm.2024.487.
  • R. Nasiri, “Microfluidic-Based Approaches in Targeted Cell/Particle Separation Based on Physical Properties: Fundamentals and Applications,” 2020.
  • C. Liu, C. Xue, J. Sun, and G. Hu, “A generalized formula for inertial lift on a sphere in microchannels,” Lab Chip, vol. 16, no. 5, pp. 884–892, 2016, doi: 10.1039/C5LC01522G.
  • A. T. Aldemir, S. Cadirci, and L. Trabzon, “Investigation of inertial focusing of micro- and nanoparticles in spiral microchannels using computational fluid dynamics,” Physics of Fluids, vol. 35, no. 11, p. 112012, Nov. 2023, doi: 10.1063/5.0173356.
  • D. Di Carlo, J. F. Edd, D. Irimia, R. G. Tompkins, and M. Toner, “Equilibrium Separation and Filtration of Particles Using Differential Inertial Focusing,” Anal. Chem., vol. 80, no. 6, pp. 2204–2211, Mar. 2008, doi: 10.1021/ac702283m.
  • J. S. Park, S.-H. Song, and H.-I. Jung, “Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels,” Lab Chip, vol. 9, no. 7, pp. 939–948, 2009, doi: 10.1039/B813952K.
  • Dean, “Fluid motion in a curved channel,” R. Soc. Lond. A, vol. 121, no. 787, pp. 402–420, Nov. 1928, doi: 10.1098/rspa.1928.0205.
  • J. Zhang, W. Li, M. Li, G. Alici, and N.-T. Nguyen, “Particle inertial focusing and its mechanism in a serpentine microchannel,” Microfluid Nanofluid, vol. 17, no. 2, 305–316, Aug. 2014, doi: 10.1007/s10404-013-1306-6.
  • S. Narayana Iyengar, T. Kumar, G. Mårtensson, and A. Russom, “High resolution and rapid separation of bacteria from blood using elasto‐inertial microfluidics,” Electrophoresis, vol. 42, no. 23, pp. 2538–2551, Dec. 2021, doi: 10.1002/elps.202100140.
  • H. Amini, W. Lee, and D. Di Carlo, “Inertial microfluidic physics,” Lab Chip, vol. 14, no. 15, p. 2739, 2014, doi: 10.1039/c4lc00128a.
  • D. Di Carlo, J. F. Edd, K. J. Humphry, H. A. Stone, and M. Toner, “Particle Segregation and Dynamics in Confined Flows,” Phys. Rev. Lett., vol. 102, no. 9, p. 094503, Mar. 2009, doi: 10.1103/PhysRevLett.102.094503.
  • K. Hood, S. Lee, and M. Roper, “Inertial migration of a rigid sphere in three- dimensional Poiseuille flow,” J. Fluid Mech., vol. 765, pp. 452–479, Feb. 2015, doi: 10.1017/jfm.2014.739.
  • J. Zhou and I. Papautsky, “Fundamentals of inertial focusing in microchannels,” Lab Chip, vol. 13, no. 6, p. 1121, 2013, doi: 10.1039/c2lc41248a.
  • R. Moloudi, S. Oh, C. Yang, M. Ebrahimi Warkiani, and M. W. Naing, “Inertial particle focusing dynamics in a trapezoidal straight microchannel: application to particle filtration,” Microfluid Nanofluid, vol. 22, no. 3, p. 33, Mar. 2018, doi: 10.1007/s10404-018-2045-5.
  • S. C. Hur, N. K. Henderson-MacLennan, E. R. B. McCabe, and D. Di Carlo, “Deformability-based cell classification and enrichment using inertial microfluidics,” Lab Chip, vol. 11, no. 5, p. 912, 2011, doi: 10.1039/c0lc00595a.
  • A. A. S. Bhagat, S. S. Kuntaegowdanahalli, and I. Papautsky, “Inertial microfluidics for continuous particle filtration and extraction,” Microfluid Nanofluid, vol. 7, no. 2, pp. 217–226, Aug. 2009, doi: 10.1007/s10404-008-0377-2.
  • A. Shamloo, S. Abdorahimzadeh, and R. Nasiri, “Exploring contraction– expansion inertial microfluidic‐based particle separation devices integrated with curved channels,” AIChE Journal, vol. 65, no. 11, p. e16741, Nov. 2019, doi: 10.1002/aic.16741.
  • A. Mashhadian and A. Shamloo, “Inertial microfluidics: A method for fast prediction of focusing pattern of particles in the cross section of the channel,” Analytica Chimica Acta, vol. 1083, pp. 137–149, Nov. 2019, doi: 10.1016/j.aca.2019.06.057.
  • K. Hood, S. Kahkeshani, D. Di Carlo, and M. Roper, “Direct measurement of particle inertial migration in rectangular microchannels,” Lab Chip, vol. 16, no. 15, pp. 2840–2850, 2016, doi: 10.1039/C6LC00314A.
  • K. Akbarnataj, S. Maleki, M. Rezaeian, M. Haki, and A. Shamloo, “Novel size- based design of spiral microfluidic devices with elliptic configurations and trapezoidal cross-section for ultra-fast isolation of circulating tumor cells,” Talanta, vol. 254, p. 124125, Mar. 2023, doi: 10.1016/j.talanta.2022.124125.
  • A. Özbey, M. Karimzadehkhouei, S. Akgönül, D. Gozuacik, and A. Koşar, “Inertial Focusing of Microparticles in Curvilinear Microchannels,” Sci Rep, vol. 6, no. 1, p. 38809, Dec. 2016, doi: 10.1038/srep38809.
  • A. A. S. Bhagat, S. S. Kuntaegowdanahalli, and I. Papautsky, “Enhanced particle filtration in straight microchannels using shear-modulated inertial migration,” Physics of Fluids, vol. 20, no. 10, p. 101702, Oct. 2008, doi: 10.1063/1.2998844.