3rd International Conference on Chemo and BioInformatics, Kragujevac, September 25-26, 2025. (pp. 20-26)
AUTOR(I) / AUTHOR(S): Mioljub Nešić, Vesna Miletić, Branislav Ćujić, Maja Nešić
Download Full Pdf 
DOI: 10.46793/ICCBIKG25.020N
SAŽETAK / ABSTRACT:
Results of this work confirmed the successful adaptation of a cost-effective laser engraving system and a photoacoustic cell from an earlier generation spectroscopy unit into a frequency photoacoustic excitation and detection system.
In parallel, sample systems were developed with thin layers of polymer-based protoporphyrin IX applied on thin films of Tungsten sputtered on a glass substrate. The described sample systems were recorded by the reflection-mode frequency photoacoustics. Tendencies in the formation of amplitude response have been successfully recorded, which are attributed to differences in thermo-optical properties and chemical composition of the observed samples. The results are interpreted in terms of the newly developed theoretical model of photoacoustic response of two- layered samples and have been proven to be in accordance with it. The results have been effectively correlated with the established theoretical model from the literature, which has not been used before in biomedical applications, thus laying the groundwork for applying the method to characterize diverse solid materials at different levels of transparency. This result has demonstrated the potential of the system to successfully record manifestations of various thermodynamic properties of the observed materials, allowing for ther functional characterization and potential application in biomedicine, i.e. the diagnostics and therapy of cancer.
KLJUČNE REČI / KEYWORDS:
photoacoustics, contrast, protoporphyrin IX
PROJEKAT / ACKNOWLEDGEMENT:
This research is funded by the Ministry of Education and Ministry of Science, Technological Development and Innovation, Republic of Serbia, Grants: No. 451-03- 136/2025-03/ 200017.
LITERATURA / REFERENCES:
- S. Manohar and D. Razansky, “Photoacoustics: a historical review,” Adv. Opt. Photonics, vol. 8, no. 4, pp. 586–617, Dec. 2016, doi: 10.1364/AOP.8.000586
- S. P. Galovic and D. Kostoski, “Photothermal wave propagation in media with thermal memory,” J. Appl. Phys., vol. 93, no. 5, pp. 3063–3070, 2003.
- S. P. Galovic et al., “Time-domain minimum-volume cell photoacoustic of thin semiconductor layer. I. Theory,” J. Appl. Phys., vol. 133, no. 24, p. 245701, Jun. 2023, doi: 10.1063/5.0152519.
- S. P. Galovic, Z. N. Soskic, M. N. Popovic, D. Cevizovic, and Z. Stojanovic, “Theory of photoacoustic effect in media with thermal memory,” J. Appl. Phys., vol. 116, no. 2, pp. 0–12, 2014, doi: 10.1063/1.4885458.
- M. V. Nesic, P. Gusavac, M. N. Popovic, Z. N. Soskic, and S. P. Galovic, “Thermal memory influence on the thermoconducting component of indirect photoacoustic response,” Phys. Scr., vol. T149, no. T149, p. 14018, 2012, doi: 10.1088/0031-8949/2012/T149/014018.
- M. V. Nesic, S. P. Galovic, Z. N. Soskic, M. N. Popovic, and D. M. Todorović, “Photothermal thermoelastic bending for media with thermal memory,” Int. J. Thermophys., vol. 33, no. 10– 11, pp. 2203–2209, 2012, doi: 10.1007/s10765-012-1237-6.
- S. Choi, J. Kim, H. Jeon, C. Kim, and E.-Y. Park, “Advancements in photoacoustic detection techniques for biomedical imaging,” Npj Acoust., vol. 1, no. 1, p. 1, Mar. 2025, doi: 10.1038/s44384-025-00005-w.
- B. Park, D. Oh, J. Kim, and C. Kim, “Functional photoacoustic imaging: from nano- and micro- to macro-scale,” Nano Converg., vol. 10, no. 1, p. 29, Jun. 2023, doi: 10.1186/s40580-023- 00377-3.
- V. V. Miletic, M. N. Popovic, S. P. Galovic, D. D. Markushev, L. Kostic, and M. V. M. Nesic, “Influence of non-irradiated surface optical absorber on temperature gradient induced by photothermal effect in a thin film,” Facta Univ. – Ser. Phys. Chem. Technol., vol. 20, no. 1, pp. 67–77, 2022, doi: 10.2298/fupct2201067m.
- V. V. Miletic, M. N. Popovic, S. P. Galovic, D. D. Markushev, and M. V. Nesic, “Photothermally induced temperature variations in a low-absorption sample via backside absorption,” J. Appl. Phys., vol. 133, no. 7, p. 075101, Feb. 2023, doi: 10.1063/5.0134313.
- A. Somer et al., “Photoacoustic Signal of Optically Opaque Two-Layer Samples: Influence of Anomalous Thermal Diffusion,” Int. J. Thermophys., vol. 46, no. 6, p. 84, Jun. 2025, doi: 10.1007/s10765-025-03554-0.
- M. V. Nesic, B. Cujic, M. Misic, and S. Jovanovski, “Development of Experimental Reflection Setup for Functional Characterization of Solid Samples Using Frequency Modulated Photoacoustics – unpublished,” Measurement, vol., no., p., -, doi: MEAS-D-25-01815.
- L. Olenka, A. N. Medina, M. L. Baesso, A. C. Bento, and A. F. Rubira, “Monitoring the Depth Penetration of Dyes in Poly (Ethylene Terephthalate) Films Using a Two Layer Based Photoacoustic Model,” Braz. J. Phys., vol. 32, no. 2B, pp. 516–522, 2002.
- A. C. Bento, D. T. Dias, L. Olenka, A. N. Medina, and M. L. Baesso, “On the Application of the Photoacoustic Methods for the Determination of Thermo-Optical Properties of Polymers,” Braz. J. Phys., vol. 32, no. 2B, pp. 483–494, 2002.
- G. G. de la Cruz and Yu. G. Gurevich, “Thermal diffusion of a two-layer system,” Phys Rev B, vol. 51, no. 4, pp. 2188–2192, Jan. 1995, doi: 10.1103/PhysRevB.51.2188.
- A. M. Mansanares, H. Vargas, F. Galembeck, J. Buijs, and D. Bicanic, “Photoacoustic characterization of a two-layer system,” J. Appl. Phys., vol. 70, no. 11, pp. 7046–7050, 1991.
- S. M. Aleksić et al., “Photoacoustic Analysis of Illuminated Si-TiO2 Sample Bending Along the Heat-Flow Axes,” Silicon, 2022, doi: 10.1007/s12633-022-01723-6.
- V. V. Miletic et al., “Ispitivanje uticaja nanetog sloja boje na površinske temperaturske varijacije laserski sinterovanog poliamida,” in 21st International Symposium INFOTEH- JAHORINA, 16-18 March 2022, 2022, pp. 16–18. [Online]. Available: https://infoteh.etf.ues.rs.ba/zbornik/2022/
- T. Sartoretti et al., “Tungsten-Based Contrast Agent for Photon-Counting Detector CT Angiography in Calcified Coronaries: Comparison to Iodine in a Cardiovascular Phantom,” Invest. Radiol., vol. 59, no. 10, p. 677, Oct. 2024, doi: 10.1097/RLI.0000000000001073.
- T. Sartoretti et al., “Photon-counting CT with tungsten as contrast medium: Experimental evidence of vessel lumen and plaque visualization,” Atherosclerosis, vol. 310, pp. 11–16, Oct. 2020, doi: 10.1016/j.atherosclerosis.2020.07.023.
- T. Ose et al., “A novel Tungsten-based fiducial marker for multi-modal brain imaging,” J. Neurosci. Methods, vol. 323, pp. 22–31, Jul. 2019, doi: 10.1016/j.jneumeth.2019.04.014.
- M. Firouzi, R. Poursalehi, H. Delavari H, F. Saba, and M. A. Oghabian, “Chitosan coated tungsten trioxide nanoparticles as a contrast agent for X-ray computed tomography,” Int. J. Biol. Macromol., vol. 98, pp. 479–485, May 2017, doi: 10.1016/j.ijbiomac.2017.01.138.
- Z. Hussain, Q. Qi, J. Zhu, K. E. Anderson, and X. Ma, “Protoporphyrin IX-induced phototoxicity: Mechanisms and therapeutics,” Pharmacol. Ther., vol. 248, p. 108487, Aug. 2023, doi: 10.1016/j.pharmthera.2023.108487.
- Zawacka-Pankau, “Enlightened protein: Fhit tumor suppressor protein structure and function and its role in the toxicity of protoporphyrin IX-mediated photodynamic reaction,” Toxicol. Appl. Pharmacol., vol. 241, no. 2, pp. 246–252, Dec. 2009, doi: 10.1016/j.taap.2009.08.023