14. Savetovanje o elektrodistributivnim mrežama Srbije, sa regionalnim učešćem (2024), Broj rada: R-5.07
АУТОР / AUTHOR(S): Lazar Velimirović, Jelena Velimirović, Aleksandar Janjić
DOI: 10.46793/CIRED24.R-5.07LV
САЖЕТАК / ABSTRACT:
Sistem upravljanja energijom razvija se simultano na osnovnom nivou pojedinačnih objekata i na višem nivou mreže za snabdevanje. U ovom radu su analizirani ključni indikatori performansi vezani za efikasnost pametne mreže, kao ključnog faktora implementacije bilo kog sistema upravljanja energijom. Autori predlažu viškriterijumsku metodologiju fazi analitičkog hijerarhijskog procesa za određivanje ukupne efikasnosti pametne mreže. Definisana su četiri kriterijuma (tehnologija, troškovi, zadovoljstvo korisnika i zaštita životne sredine) i sedam performansi (u skladu sa inicijativama EU i SAD za analizu koristi i efekata sistema pametnih mreža) za izbor optimalnog projekta pametne mreže. Analiza pokazuje da su dominantne performanse optimalnog projekta pametne mreže efikasnost, bezbednost i kvalitet snabdevanja. Metodologija je ilustrovana na izboru strategije razvoja pametne mreže za srednju elektrodistributivnu kompaniju.
КЉУЧНЕ РЕЧИ / KEYWORDS:
Sistemi za upravljanje energetskom potrošnjom, fazi AHP, pametna mreža
ЛИТЕРАТУРА / REFERENCES:
[1] International Organization for Standardization, 2011, ISO 50001, Energy Management Systems-requirements with Guidance to Use.
[2] European Commission, 2009, R&D investment in the priority technologies of the SET-plan, SEC, 1296.
[3] ENTSO-E and the European Associations representing DSOs (CEDEC, E.DSO, Eurelectric, GEODE), 2021, Roadmap on the Evolution of the Regulatory Framework for Distributed Flexibility.
[4] European Commission, 2005, Toward Smart Power Networks, Lessons learned from European research FP5 projects.
[5] European Commission, 2007, Strategic Research Agenda for Europe Electricity Networks of the Future European Technology Platform.
[6] European Commission, 2010, Strategic Deployment Document for Europe Electricity Networks of the Future European Technology Platform.
[7] European Network for the Security of Control and Real Time Systems, 2011, R&D and Standardization Road Map, final deliverable 3.2.
[8] European Commission, 2020, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Energy 2020, A strategy for competitive, sustainable and secure energy
[9] Global Energy Institute, 2020, Index of U.S. Energy Security Risk, Assessing America’s Vulnerabilities in a Global Energy Market.
[10] European Commission, 2018, Smart Grids Task Force, Expert Group 2, Cybersecurity, Recommendations to the European Commission for the Implementation of a Network Code on Cybersecurity
[11] European Commission Task Force for Smart Grids, 2010, Expert Group 3: Roles and responsibilities.
[12] U.S. Department of Energy (DOE), 2010, Guidebook for ARRA SGDP/RDSI Metrics and Benefits, DOE Report.
[13] Dupont B, Meeus L. and Belmans R, 2010, Measuring the “Smartness” of the Electricity Grid, 7th International Conference on the Energy Market (EEM), pp. 1-6.
[14] Saaty T. L, 1980, The Analytic Hierarchy Process, New York: McGraw-Hill.
[15] Duru O, Bulut E and Yoshida S, 2012, Regime Switching Fuzzy AHP Model for Choice-varying Priorities Problem and Expert Consistency Prioritization: A Cubic Fuzzy-priority Matrix Design, Expert Systems with Applications, vol. 39, pp. 4954-4964.
[16] Kulak O, Durmusoglu B and Kahraman C, 2005, Fuzzy Multi-attribute Equipment Selection based on Information Axiom, Journal of Materials Processing Technology, vol. 169, pp. 337–345.
[17] Srdjevic B and Medeiros Y, 2008, Fuzzy AHP Assessment of Water Management Plans, Water Resources Management, vol. 22, pp. 877-894.
[18] Janjić A, Savić S, Velimirović L, Nikolić V, 2015, Renewable Energy Integration in Smart Gridsmulticriteria Assessment using the Fuzzy Analytical Hierarchy Process, Turkish Journal of Electrical Engineering and Computer Sciences, vol. 23, no. 6, pp. 1896-1912.
[19] Liu Y, Eckert C. M, Earl C, 2020, A Review of Fuzzy AHP Methods for Decision-making with Subjective Judgements, Expert Systems with Applications, vol. 161, 113738.
[20] Chang D. Y, 1996, Applications of the Extent Analysis Method on Fuzzy AHP, European Journal of Operational Research, vol. 95, no. 3, pp. 649-655.
[21] Janjić A, Velimirović L, Velimirović J, 2023, Multi–criteria Home Energy Management System Selection for the Smart Grid Support, Facta Universitatis, Series: Electronics and Energetics, vol. 36, no. 4, pp. 533-551.
[22] Spanidis P. M, Roumpos C, Pavloudakis F, 2021. A Fuzzy-AHP Methodology for Planning the Risk Management of Natural Hazards in Surface Mining Projects, Sustainability, vol. 13, no. 4, 2369.
[23] Karatop B, Taşkan B, Adar E, Kubat C, 2021, Decision Analysis Related to the Renewable Energy Investments in Turkey based on a Fuzzy AHP-EDAS-Fuzzy FMEA Approach, Computers & Industrial Engineering, vol. 151, 106958.
[24] Velimirović L, Janjić A, Velimirović J, 2023, Multi-criteria Decision Making for Smart Grid Design and Operation: A Society 5.0 Perspective. Springer Nature.