ОПТИМИЗАЦИЈА СТРУКТУРЕ ХИБРИДНЕ ВЕТАР-СОЛАРНЕ ЕЛЕКТРАНЕ ЗА БОЉЕ ИСКОРИШЋЕЊЕ РАСПОЛОЖИВОГ КАПАЦИТЕТА ПРЕНОСНЕ МРЕЖЕ У ТАЧКИ ПРИКЉУЧЕЊА

37. саветовање CIGRE Србија (2025) СИГУРНОСТ, СТАБИЛНОСТ, ПОУЗДАНОСТ И RESILIENCE ЕЛЕКТРОЕНЕРГЕТСКОГ СИСТЕМА МУЛТИСЕКТОРСКО ПОВЕЗИВАЊЕ У ЕНЕРГЕТИЦИ И ПРИВРЕДИ – C1-04

АУТОР(И) / AUTHOR(S): Бојана Шкрбић, Кристина Лазовић, Ђорђе Лазовић, Жељко Ђуришић

 

Download Full Pdf   

DOI:  10.46793/CIGRE37.C1.04

САЖЕТАК / ABSTRACT:

Wind power plants (WPP) and photovoltaic power plants (PVPP) have a relatively small average annual capacity factor (CF), so they require significantly larger installed power in comparison to thermal power plants which are phasing out in the process of decarbonizing electricity generation. On the other hand, transmission network (TN) needs to be dimensioned based on the maximal power a power plant (PP) injects into the electric power system (EPS). For this reason, massive WPP’s and PVPP’s connection requires new transmission capacities (transmission lines, switching stations and transformer stations) which will enable evacuation of their generating power.

Due to the small CF of renewable energy sources (RES), transmission capacities are underutilized, which increases RES development costs, and thereby the price of the electrical energy generated by these sources also increases. The underloaded high voltage transmission lines bring surpluses in generated reactive power, which causes the emergence of overvoltages in transmission network and jeopardize system reliability. The development of TN has significant negative influence on the environment, first of all due to the space occupied by the corridors of high voltage transmission lines, but also due to the high voltage hazard and acustic and electromagnetic pollution.

The complementarity of time profiles of these sources makes them suitable for the development of hybrid PPs, i.e. the integrated solar and WPPs which have a single point of connection (POC) to the TN. Such objects can be, both in technical and regulatory aspects, treated as a single PP which time generation profile corresponds to the sum of generating powers of PV systems and wind generators. These PPs have a relatively small number of hours during which the injected powers equal to the sum of installed powers of PV systems and wind generators occur because the probability of occurrence of strong winds at the same time as high insolations is small. This fact enables us to optimize the required injection power approved for the POC to significantly smaller value than the sum of installed powers on inverter terminals of photovoltaic systems and wind generators. This way utilization of TN infrastructure can be significantly improved in comparison to the independent operation of PVPP and WPP.

The current regulation  requires new RES PPs to install the balancing capacities which installed power and energy capacity depend on the approved power at the POC of the PP to the TN [1]. The development of hybrid wind-solar PPs can reduce the required approved connection power, and thereby the also the required balancing capacity of the PP which reduces specific costs of the PP development.

In this paper, a model for optimizing the installed powers of WPP and PVPP for the given value approved power at the POC to the TN in order to achieve, for certain level of unused energy of the PP, the maximal total annual energy the PP injects into the network.

КЉУЧНЕ РЕЧИ / KEYWORDS:

hybrid power plant, connection capacity, wind power plant, photovoltaic power plant, optimization

ПРОЈЕКАТ / ACKNOWLEDGEMENT:

Аутори захваљују Министарству науке, технолошког развоја и иновација Републике Србије за финансијску подршку под уговором са бројем: 451-03-137/2025-03/200103.

ЛИТЕРАТУРА / REFERENCES:

  •  “Измене и допуне закона о коришћењу обновљивих извора електричне енергије Сл. гласник РС“, бр. 35/2023 (чланови 67a, 67б, 68б.).”
  • IEA, “Net Zero by 2050 – A Roadmap for the Global Energy Sector (4th revision),” Oct. 2021.
  • “IRENA (2025), Renewable capacity statistics 2025,” International Renewable Agency, Abu Dhabi, 2025.
  • W. Gorman et al., “Grid connection barriers to renewable energy deployment in the United States,” Joule, vol. 9, no. 2, p. 101791, Feb. 2025, doi: 10.1016/j.joule.2024.11.008.
  • “Grid access challenges for wind farms in Europe,” Wind Europe, Jun. 2024.
  • L. Herding, R. Cossent, M. Rivier, and S. Bañales, “Assessing the impact of renewable energy penetration and geographical allocation on transmission expansion cost: A comparative analysis of two large-scale systems,” Sustainable Energy, Grids and Networks, vol. 38, p. 101349, Jun. 2024, doi: 10.1016/j.segan.2024.101349.
  • S. Zapata, M. Castaneda, M. M. Herrera, and I. Dyner, “Investigating the concurrence of transmission grid expansion and the dissemination of renewables,” Energy, vol. 276, p. 127571, Aug. 2023, doi: 10.1016/j.energy.2023.127571.
  • P. McDonald, “Interrelationships of renewable energy zones in Queensland: localised effects on capacity value and congestion,” Economic Analysis and Policy, vol. 81, pp. 818–833, Mar. 2024, doi: 10.1016/j.eap.2024.01.005.
  • A. Street and P. Prescott, “On the regulatory and economic incentives for renewable hybrid power plants in Brazil,” Energy Economics, vol. 140, p. 107989, Dec. 2024, doi: 10.1016/j.eneco.2024.107989.
  • P. R. Brown, T. Williams, M. L. Brown, and C. Murphy, “System-cost-minimizing deployment of PV-wind hybrids in low-carbon U.S. power systems,” Applied Energy, vol. 365, p. 123151, Jul. 2024, doi: 10.1016/j.apenergy.2024.123151.
  • J. M. González-Ramírez, Á. Arcos-Vargas, and F. Núñez, “Optimal sizing of hybrid wind-photovoltaic plants: A factorial analysis,” Sustainable Energy Technologies and Assessments, vol. 57, p. 103155, Jun. 2023, doi: 10.1016/j.seta.2023.103155.
  • P. P. Chinaris, G. N. Psarros, and S. A. Papathanassiou, “Hybridization of wind farms with co-located PV and storage installations,” Renewable Energy, vol. 240, p. 122057, Feb. 2025, doi: 10.1016/j.renene.2024.122057.
  • J. P. Murcia Leon, H. Habbou, M. Friis-Møller, M. Gupta, R. Zhu, and K. Das, “HyDesign: a tool for sizing optimization of grid-connected hybrid power plants including wind, solar photovoltaic, and lithium-ion batteries,” Wind Energ. Sci., vol. 9, no. 4, pp. 759–776, Apr. 2024, doi: 10.5194/wes-9-759-2024.
  • Б. Шкрбић and Ж. Ђуришић, “Анализа оптималне структуре и просторне дисперзивности обновљивих извора енергије у процесу декарбонизације електроенергетског система Србије,” presented at the 36. Саветовање CIGRE Србија 2023., Златибор, 2023, p. СТК Ц1-07.
  • B. Škrbić and Ž. Đurišić, “Novel Planning Methodology for Spatially Optimized RES Development Which Minimizes Flexibility Requirements for Their Integration into the Power System,” Energies, vol. 16, p. 3251, 2023, doi: doi.org/10.3390/en16073251.
  • L. Frías-Paredes and M. Gastón-Romeo, “A new methodology to easy integrate complementarity criteria in the resource assessment process for hybrid power plants: Offshore wind and floating PV,” Energy Conversion and Management: X, vol. 26, p. 100938, Apr. 2025, doi: 10.1016/j.ecmx.2025.100938.
  • D. Harrison-Atlas, C. Murphy, A. Schleifer, and N. Grue, “Temporal complementarity and value of wind-PV hybrid systems across the United States,” Renewable Energy, vol. 201, pp. 111–123, Dec. 2022, doi: 10.1016/j.renene.2022.10.060.
  • A. Couto and A. Estanqueiro, “Assessment of wind and solar PV local complementarity for the hybridization of the wind power plants installed in Portugal,” Journal of Cleaner Production, vol. 319, p. 128728, Oct. 2021, doi: 10.1016/j.jclepro.2021.128728.