Transcriptomic and Network-Based Analysis of Autophagy Signaling Pathways in Bortezomib Resistance in Multiple Myeloma

3rd International Conference on Chemo and BioInformatics, Kragujevac, September 25-26. 2025. (pp. 261-264) 

 

АУТОР(И) / AUTHOR(S): Aysen Sagnak, Oguzhan Akgun, Halime Sena Ekmekci, Elif Erturk, Fazil Cagri Hunutlu, Tuba Ersal, Vildan Ozkocaman, Fahir Ozkalemkas, Hulya Ozturk Nazlioglu, Ferda Ari

 

Download Full Pdf   

DOI:  10.46793/ICCBIKG25.261S

САЖЕТАК / ABSTRACT:

Multiple myeloma (MM), a malignancy of plasma cells in the bone marrow, accounts for 1.8% of all cancers and about 10% of hematological malignancies. Although proteasome inhibitors such as bortezomib have significantly improved MM survival rates, resistance remains a major challenge, particularly in high-risk patients. One of the mechanisms contributing to this resistance is the activation of autophagy, allowing myeloma cells to survive proteotoxic stress induced by bortezomib. This study aimed to identify autophagy-related signaling pathways involved in bortezomib resistance using transcriptomic and network-based bioinformatics analyses. RNA-seq data (GSE144249) of bortezomib-resistant MM cells were analyzed for differentially expressed genes, followed by KEGG and GO enrichment analyses. Protein-protein interaction (PPI) networks were constructed to identify key hub genes potentially mediating autophagy-related resistance. Our results revealed the activation of autophagy pathways and highlighted specific candidate genes associated with bortezomib resistance. Further functional validation of these targets is warranted to support the development of novel therapeutic strategies against MM drug resistance.

КЉУЧНЕ РЕЧИ / KEYWORDS:

bioinformatics, multiple myeloma, bortezomib resistance, autophagy, transcriptomic analysis

ПРОЈЕКАТ / ACKNOWLEDGEMENT:

This study was supported by Bursa Uludağ University Scientific Research Projects Coordination Unit (BAP) with project number TGA-2025-1915. We would like to thank the Bursa Uludag Molecular Cancer Research Laboratory (BUMKAL) for their valuable support and contributions throughout this study.

ЛИТЕРАТУРА / REFERENCES:

  • J. Bladé, M. Beksac, J. Caers, A. Jurczyszyn, M. von Lilienfeld-Toal, P. Moreau, L. Rasche, L. Rosiñol, S.Z. Usmani, E. Zamagni, P. Richardson, Extramedullary disease in multiple myeloma: a systematic literature review, Blood Cancer J. 12 (2022) 45.
  • A. Kumar, U.K. Singh, A. Chaudhary, Targeting autophagy to overcome drug resistance in cancer therapy, Future Med. Chem. 7 (2015) 1535–1542.
  • G. Bianchi, P.G. Richardson, K.C. Anderson, Promising therapies in multiple myeloma, Blood 126 (2015) 300–310.
  • J. Silberstein, S. Tuchman, S.J. Grant, What Is Multiple Myeloma?, JAMA 327 (2022) 497.
  • T. Hideshima, P. Richardson, D. Chauhan, V.J. Palombella, P.J. Elliott, J. Adams, K.C. Anderson, The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells, Cancer Res. 61 (2001) 3071–3076
  • I. Hanamura, Multiple myeloma with high-risk cytogenetics and its treatment approach, Int. J. Hematol. 115 (2022) 762–777
  • J. Wu, J. Liu, Research progress in proteasome inhibitor resistance to multiple myeloma, Zhong Nan Da Xue Xue Bao Yi Xue Ban. 46 (2021) 900–908.
  • Y. Qin, M. Ashrafizadeh, V. Mongiardini, B. Grimaldi, F. Crea, K. Rietdorf, B. Győrffy, D.J. Klionsky, J. Ren, W. Zhang, X. Zhang, Autophagy and cancer drug resistance in dialogue: Pre- clinical and clinical evidence, Cancer Lett. 570 (2023) 216307.
  • M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, K. Morishima, KEGG: New perspectives on genomes, pathways, diseases and drugs, Nucleic Acids Res. 45 (2017) D353–D361.
  • M. Kanehisa, S. Goto, KEGG: Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Res. 28 (2000) 27–30
  • G. Yu, Q.Y. He, ReactomePA: An R/Bioconductor package for reactome pathway analysis and visualization, Mol. BioSyst. 12 (2016) 477–479
  • M. J.M.F. Reijnders, R.M. Waterhouse, Summary Visualizations of Gene Ontology Terms With GO-Figure!, Front. Bioinform. 1 (2021)
  • L. Mullen, Fast, Consistent Tokenization of Natural Language Text [R package tokenizers version 0.3.0], (2022).
  • K. Welbers, W. Van Atteveldt, K. Benoit, Text Analysis in R, Commun. Methods Meas. 11 (2017) 245–265.
  • D. Szklarczyk, A.L. Gable, K.C. Nastou, D. Lyon, R. Kirsch, S. Pyysalo, … C. von Mering, The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets, Nucleic Acids Res. 49 (2021) D605– D612.
  • H. Chang, Z. Zou, Targeting autophagy to overcome drug resistance: further developments, Hematol. Oncol. 13 (2020) 159.
  • Z. Yun, J. Zhichao, Y. Hao, et al., Targeting autophagy in multiple myeloma, Leuk. Res. 59 (2017) 97–104.