Chemia Naissensis Volume 6, No.1 (2023) (стр. 1-29)
АУТОР(И) / AUTHOR(S): Maja Nujkić, Dragana Medić, Žaklina Tasić, Snežana Milić, Marina Pešić
Е-АДРЕСА / E-MAIL: mnujkic@tfbor.bg.ac.rs
DOI: 10.46793/ChemN6.2.01N
САЖЕТАК / ABSTRACT:
Corrosion-resistant alloys such as stainless steel provide an ideal substrate for microbial colonization due to the absence of corrosion products, similar to inert non-metallic surfaces. Stainless steels are sensitive to pitting and other types of localized corrosion in chloride-containing media such as seawater. Sulfate-reducing bacteria play an essential role in the corrosion of stainless steel in marine and soil environments. Sulfate is utilized by microbes as a terminal electron acceptor as their respiration drives sulfate reduction leading to the formation of H2S, which can lead to a significant increase in anodic and cathodic processes and corrosion of materials. In reviewing the literature, it was found that most studies on microbially induced corrosion in stainless steels indicate that it is caused by the influence of chlorides and sulfides in the soil resulting from the secretion of sulfate-reducing bacteria. The influence of sulfate-reducing bacteria on stainless steel is described in detail in this review, which can be seen from the following points: general properties of sulfate-reducing bacteria, morphology and chemical composition of biofilm and corrosion products, mechanisms of microbiological corrosion by sulfate-reducing bacteria and electrochemical studies of corrosion rates of stainless steel by sulfate-reducing bacteria under different experimental conditions.
КЉУЧНЕ РЕЧИ / KEYWORDS:
stainless steel, sulfate-reducing bacteria, corrosion
ПРОЈЕКАТ/ ACKNOWLEDGEMENT:
The research presented in this paper was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, within the funding of the scientific research work at the University of Belgrade, Technical Faculty in Bor, according to the contract with registration number 451-03-65/2024-03/200131.
ЛИТЕРАТУРА / REFERENCES:
- Abdullah, A., Yahaya, N., Noor, N.M., Rasol, R.M. (2014) Microbial Corrosion of API 5L X-70 Carbon Steel by ATCC 7757 and Consortium of Sulfate-Reducing Bacteria. J. Chem., 1–7.
- Antony, P.J., Chongdar, S., Kumar, P. i Raman, R. (2007). Corrosion of 2205 duplex stainless steel in chloride medium containing sulfate-reducing bacteria. Electrochim. Acta, 52, 3985–94.
- Antony, P.J., Singh Raman, R.K., Kumar, P., Raman, R. (2008). Corrosion of 2205 Duplex Stainless Steel Weldment in Chloride Medium Containing Sulfate-Reducing Bacteria. Metall. Mater. Trans., 39 A, 2689.
- Anusha, Y. G., Lavanya Mulky (2023). Biofilms and beyond: a comprehensive review of the impact of Sulphate Reducing Bacteria on steel corrosion, Biofouling, 1–11.
- Baker, P.W., Ito, K., Watanabe, K. (2003). Marine prosthecate bacteria involved in the ennoblement of stainless steel. Environ. Microbiol., 5, 925-932.
- Bastidas, J.M., Torres, C.L., Cano, E., Polo, J.L. (2002). Influece of molybdenum on passivation of polarized stainless steels in a chloride environment. Corros. Sci. 44, 625.
- Barton, L.L., and Tomei, F.A. (1995). Characteristics and activities of sulfatereducing bacteria in sulfate-reducing bacteria. In: Barton LL (ed) Biotech. Hand., vol 8. Plenum Press, New York.
- Beech, I.B., Smith, J.R., Steele, A.A., Penegar, I., Campbell, S.A. (2002). The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces. Colloid. Surf., B 23, 231–247.
- Beech, I. and Sunner, J. (2004). Biocorrosion: towards understanding interactions between biofilms and metals. Curr. Opin. Biotech., 15, 181–186.
- Chen, G., Ford, T. E., and Clayton, C. R. (1998). Interaction of Sulfate-Reducing Bacteria with Molybdenum Dissolved from Sputter-Deposited Molybdenum Thin Films and Pure Molybdenum Powder. J. coll. Inter. Sci., 204, 237–246.
- Chen, T.H. and Yang, J.R. (2002). Microstructural characterization of simulated heat affected zone in a nitrogen-containing 2205 duplex stainless steel. Mater. Sci. Eng. A, 338, 166–81.
- Chen, L.;Wei, B.; Xu, X. (2021). Effect of Sulfate-Reducing Bacteria (SRB) on the Corrosion of Buried Pipe Steel in Acidic Soil Solution. Coatings, 11, 625.
- Cheng, S., Enhou, H. (2005). Effects of SRB on corrosion of Q235 steel during evaporation of water in soil. J. Chin. Soc. Corrosion. Protect., 25, 307–311.
- Da Silva, S., Basseguy, R., Bergel, A. (2002). The role of hydrogenases in the anaerobic microbiologically influenced corrosion of steels. Bioelectrochem., 56, 77.
- Da Silva, S., Basseguy, R., Bergel, A. (2004) . Electron transfer between hydrogenase and 316L stainless steel: identification of a hydrogenase-catalyzed cathodic reaction in anaerobic MIC J.Electroanal. Chem. 561, 93.
- De Romero, M., Duque, Z., de Rincon, O., Perez, O., Araujo, I., Martinez, A. (2000). Online Monitoring systems of microbiologically influenced corrosion on Cu-10% Ni alloy in chlorinated, brackish water. Corros., 55, 867–876.
- Duan, J., Hou, B., Yu, Z. (2006). Characteristics of sulfide corrosion products on 316L stainless steel surfaces in the presence of sulfate-reducing bacteria. Mater. Sci. Eng. C, 26, 624 – 629.
- Elmouaden, K., Jodeh, S., Chaouay, A., Oukhrib, R., Salghi, R., Bazzi, L., Hilali, M. (2016). Sulfate-Reducing Bacteria Impact on Copper Corrosion Behavior in Natural Seawater Environment. JSEMAT, 6, 36–46.
- Flint, S.H., Brooks, J.D., Bremer, P.J. (2000). Properties of the stainless steel substrate, influencing the adhesion of thermo-resistant streptococci. J. Food Eng., 43, 235–242.
- Gibson, G.R., (1990). Physiology and ecology of the sulphate-reducing bacteria. J. Appl. Bacteriol., 69, 769–797.
- Geesey, G.G., Gillis, R.J., Avci, R., Daly, D., Hamilton, M., Shope, P., Harhin, G. (1996). Theinfluence of surface features on bacterial colonization and subsequent substratum chemical changes of 316L stainless steel. Corros. Sci., 38, 73.
- Hang, D.T. (2003). Microbiological study of the anaerobic corrosion of iron. PhD Dissertation, University of Bremen, Bremen, Germany.
- Ilhan-Sungur, E, Cansever, N, Cotuk, A (2007). Microbial corrosion of galvanized steel by a freshwater strain of sulphate reducing bacteria (Desulfovibrio sp.). Corros. Sci., 49, 1097–1109.
- Javaherdashti, R. (2011). Impact of sulphate-reducing bacteria on the performance of engineering materials. Appl. Microbiol. Biotechnol., 91, 1507–1517.
- Jeffrey, R. and Melchers, R.E., (2003). Bacteriological influence in the development of iron sulphide species in marine immersion environments. Corros. Sci., 45, 693.
- Johansson, L. S.; Saastamoinen, T. (1999). Investigating early stages of biocorrosion with XPS: AISI 304 stainless steel exposed to Burkholderia Species. Appl. Surf. Sci., 144, 244–248.
- Lane, R.A. (2005). Under the microscope: understanding, detecting and preventing microbiologically influenced corrosion. Amptiac Quart, 9, 3–8.
- Lee, W., Lewandowski, Z., Hamilton, W.A., (1995). Role of Sulfate-reducing Bacteria in Corrosion of Mild Steel : a Review. Biofouling, 8, 165.
- Liu, H., Sharma, M., Wang, J., Frank Cheng, Y., Liu, H. (2018). Microbiologically influenced corrosion of 316L stainless steel in the presence of Chlorella vulgaris. Int. Biodeterioration Biodegradation, 129, 209–216.
- Liu, H., Meng, G., Li, W., Gu, T., Liu, H. (2019). Microbiologically Influenced Corrosion of Carbon Steel Beneath a Deposit in CO2-Saturated Formation Water Containing Desulfotomaculum nigrificans. Front. Microbiol., 10, 1298.
- Lopes, F.A., Morin, P., Oliveira, R., Melo, L.F., (2005). The influence of nickel on the adhesion ability of Desulfovibrio desulfuricans. Coll. Surf. B, 46, 127–33.
- Lv, M., Du, M., Li, X., Yue, Y., Chen, X. (2019). Mechanism of microbiologically influenced corrosion of X65 steel in seawater containing sulfate-reducing bacteria and iron-oxidizing bacteria. J. Mater. Res. Technol., 8, 4066–4078.
- Maruthamuthu, S, Muthukumar, N, Natesan, M, Palaniswamy, N. (2008). Role of air microbes on atmospheric corrosion. Corrosion. Sci., 94, 359–363.
- Mehanna, M., Basseguy, R., Delia, M., Bergel, A. (2009). Role of direct microbial electron transfer in corrosion of steels. Electrochemistry Communications, 11, 568–571.
- Muthupandi, V., Bala Srinivasan, P., Seshadri, S.K., Sundaresan, S. (2003), Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds. Mater. Sci. Eng. A, 358, 9–16.
- Nguyen, T. M. P., Sheng, X., Ting, Y.-P., Pehkonen, S. O. (2008). Biocorrosion of AISI 304 Stainless Steel by Desulfovibrio desulfuricans in Seawater. Ind. Eng. Chem. Res., 47, 4703–4711.
- Keresztes, Z.; Felhosi, I.; Kalman, E. (2001). Role of redox properties of biofilms in corrosion process. Electrochim. Acta, 46, 3841–3849.
- Kuang, F., Wang, J., Yan, L., Zhang, D. (2007). Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel, Electrochim Acta, 53, 6084–6088.
- Kusy, R.P.; Ambrose, W.W.; La Vanier, L.A.; Newman, J.G. Whitley, J.Q. (2002). Analyses of rampant corrosion in stainless steel retainers of orthodontic patients. J. Biomed. Mater. Res., 62, 106–118.
- Ong, Y.L., Razatos, A., Georgiou, G., Sharma, M.M. (1999). Adhesion Forces between E. coli Bacteria and Biomaterial Surfaces. Langmuir, 15, 2719–2725.
- Pal, M.K., Lavanya, M. (2022). Microbial Influenced Corrosion: Understanding Bioadhesion and Biofilm Formation. J. Bio. Tribo. Corros., 8, 76.
- Ramdane, H., Benaioun, N., Guezzoul, M., Moulayat, N., Craciun, V., (2023) Investigation of the corrosion-preventing properties of nickel-coated austenitic stainless steel (AISI 304) in NaOH and NaOH + 10% NaCl solutions. Inorg. Chem. Commun., 152, 110671.
- Rohwerder, T., Gehrke, T., Kinzler, K., Sand, W. (2003). Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol., 63, 239-248.
- Sheng, X.; Ting, Y. P.; Pehkonen, S. O. (2007). The influence of sulphate reducing bacteria Biofilm on the corrosion of stainless steel AISI 316. Corros. Sci, 49, 2159–2176.
- Song, W., Chen, X., He, C., Li, X., Liu, C. (2018). Microbial Corrosion of 2205 Duplex Stainless Steel in Oilfield-Produced Water. Int. J. Electrochem. Sci. 13, 675–689.
- Stott, J.F.D. (1988). Assessment and control of microbially induced corrosion. Met Mater, 4, 224–229.
- Stott, J.F.D. (1993). What progress in the understanding of microbially induced corrosion has been made in the last 25 years? A personal viewpoint. Corrosion Sci, 35, 667–673.
- Sun, C., Xu, J., Wang, F.H., Yu, C.K. (2011). Effect of sulfate reducing bacteria on corrosion of stainless steel 1Cr18Ni9Ti in soils containing chloride ions. Materials Chemistry and Physics, 126, 330–336.
- Tang, HY., Yang, C., Ueki, T., Pittman, C.C., Xu, D., Woodard, T.L., Holmes, D.E., Gu, T., Wang, F., Lovley, D.R. (2021). Stainless steel corrosion via direct iron-to-microbe electron transfer by Geobacter species. ISME J., 15, 3084–3093.
- Tavares, S.S.M., Pardal, J.M., Lima, L.D., Bastos, I.N., Nascimento, A.M., de Souza, J.A. (2007). Characterization of microstructure, chemical composition, corrosion resistance and toughness of a multipass weld joint of superduplex stainless steel UNS S32750. Mater. Charact., 58, 610–16.
- Tide, C., Harkin, S.R., Geesey, G.G., Bremer, P.J., Scholz, W. (1999). The influence of welding procedures on bacterial colonization of stainless steel weldments. Journal of Food Engineering, 42, 85.
- Tran, T.T.T., Kannoorpatti, K., Padovan, A., Thennadil, S. (2021). Sulphate-Reducing Bacteria’s Response to Extreme pH Environments and the Effect of Their Activities on Microbial Corrosion. Appl. Sci., 11, 2201.
- Vujičić, V. (2002). Korozija i tehnologija zaštite materijala, Vojna akademija, Beograd.
- Victoria, S.N., Sharma, A., Manivannan, R. (2021). Metal corrosion induced by microbial activity–Mechanism and control options. J Ind Chem Soc., 98, 100083.
- Videla, H. A., Herrera, L. K. (2005). Microbiologically influenced corrosion: looking to the future. International microbiology, 8, 169-180.
- Vinnichenko, M.; Chevolleau, T.; Pham, M. T.; Poperenko, L.; Maitz, M. F. (2002). Spectroellipsometric, AFM and XPS probing of stainless steel surfaces subjected to biological influences. Appl. Surf. Sci., 202, 41– 50.
- Wan, H., Zhang, T., Wang, J., Rao, Z., Zhang, Y., Li, G., Gu, T., Liu, H. (2023). Effect of alloying element content on anaerobic microbiologically influenced corrosion sensitivity of stainless steels in enriched artificial seawater. Bioelectrochemistry, 150, 108367.
- Wang, H., Liang, C. (2008). Electrochemical Behavior of Antimicrobial Stainless Steel Bearing Copper in Sulfate Reducing Bacterial Medium. Journal of Wuhan University of TechnologyMater. Sci. Ed. Feb.
- Wei, S., Sanchez, M., Trejo, D., Gillis, C. (2010). Microbial mediated deterioration of reinforced concrete structures. Int Biodet Biodeg. 64, 748-754.
Xu, K., Dexter, S.C., Luther, G.W. (1998). Voltametric microelectrodes for biocorrosion studies. Corrosion, 54, 814–823. - Xu, L.C., Chan, K.Y., Fang, H.H.P. (2002). Application of atomic force microscopy in the study of microbiologically influenced corrosion, Mater. Charact., 48, 195–203.
- Xu, C., Zhang, Y., Cheng, G., Zhu, W. (2008). Pitting corrosion behavior of 316L stainless steel in the media of sulphate-reducing and iron-oxidizing bacteria, Materials characterization, 59, 245-255.
- Yuan, S.J., Pehkonen, S.O. (2007). Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study. Colloids and Surfaces B: Biointerfaces, 59, 87–99.
- Yuan, S.J. Pehkonen, S.O. (2009). AFM study of microbial colonization and its deleterious effect on 304 stainless steel by Pseudomonas NCIMB 2021 and Desulfovibrio desulfuricans in simulated seawater. Corrosion Science, 51, 1372–1385.
- Zhang, Y. H., Xu, C. M., Cheng, G. X. Zhu, W. S. (2007). Pitting Initiation of 316L Stainless Steel in the Media of Sulfate-Reducing and Iron-Oxidizing Bacteria. Inorganic Materials, 43, 6, 614–621.
- Zhang, C., Wen, F., Cao, Y. (2011). Progress in Research of Corrosion and Protection by SulfateReducing Bacteria Procedia. Environmental Sciences, 10, 1177 – 1182.