The influence of benzyl butyl phthalate on the growth of several phytoplankton species (Microcystis sp., Anabaena variabilis, Chlorella sp., Scenedesmus sp.) in laboratory conditions

Chemia Naissensis Volume 6, No.1 (2023) (стр. 22-40) 

АУТОР(И) / AUTHOR(S): Tamara Petronijević, Đurađ Milošević, Ivana Kostić Kokić, Milica Stojković Piperac, Tatjana Anđelković, Tatjana Mihajilov Krstev, Nikola Stanković

Е-АДРЕСА / E-MAIL: tamara.petronijevic@pmf.edu.rs

Download Full Pdf   

DOI: 10.46793/ChemN6.1.22P

САЖЕТАК / ABSTRACT:

Phthalic acid esters (PAEs) are organic compounds extensively used as plasticisers. Their widespread use has resulted in their presence in aquatic and terrestrial ecosystems, making them a high-risk pollutant. PAEs are detrimental to human health as they disrupt the endocrine system and can potentially cause cancer. Although their impact on humans is relatively well-known, more research is necessary to comprehend their effects on phytoplankton. This work aimed to examine the influence of different concentrations (50, 100, 150, 200, 250 µg/L) of benzyl butyl phthalate (BBP) on the growth of several most common phytoplankton species (Microcystis sp., Anabaena variabilis, Chlorella sp., Scenedesmus sp.) in laboratory conditions. Phytoplankton growth was monitored spectrophotometrically to determine the concentration of chlorophyll a. The results showed that higher concentrations of BBP significantly inhibited the growth of A. variabilis and Microcystis sp. Green algae showed a considerably lower sensitivity, especially Chlorella sp., where significant growth inhibition was not observed. After the experiment, the detection and quantification of BBP in extract samples were performed using gas chromatography with mass spectrometry (GC-MS). BBP was detected only in the extracted sample with Scenedesmus sp., but the detected concentration was insignificant. The results indicate that all tested organisms could probably absorb and metabolize BBP, of which Scenedesmus sp. has the least ability.

КЉУЧНЕ РЕЧИ / KEYWORDS:

algae, chlorophyll a, GC-MS, pollution

ЛИТЕРАТУРА / REFERENCES:

  • Ambe, K., Sakakibara, Y., Sakabe, A., Makino, H., Ochibe, T., & Tohkin, M. (2019). Comparison of the developmental/reproductive toxicity and hepatotoxicity of phthalate esters in rats using an open toxicity data source. The Journal of Toxicological Sciences, 44, 245-255.
  • Agas, D., Sabbieti, M. G., Capacchietti, M., Materazzi, S., Menghi, G., Materazzi, G., & Marchetti, L. (2007). Benzyl butyl phthalate influences actin distribution and cell proliferation in rat Py1a osteoblasts. Journal of cellular biochemistry, 101, 543-551.
  • Babu, B., & Wu, J. T. (2010a). Production of phthalate esters by nuisance freshwater algae and cyanobacteria. Science of the total environment, 408, 4969-4975.
  • Babu, B., & Wu, J. T. (2010b). Biodegradation of phthalate esters by cyanobacteria 1. Journal of Phycology, 46(6), 1106-1113.
  • Bhaisare, L. Y., Zade, S. B., Nagwanshi, A. M., Netam, A. K., & Chaudhary, D. D. (2022). Impacts of Benzyl Butyl Phthalate on Histo-Architecture of Gonads of African Catfish Clarias gariepinus (Burchell, 1822). Polish Journal of Environmental Studies, 31.
  • Bogdanovic, S. D. (2021). Phthalates food contamination due to their migration from plastic packaging. Doctoral dissertation. University of Niš, Faculty of Mathematics and Natural Sciences.
  • Burchadt, L. (2014). Key to identification of phytoplankton species in lakes and rivers. Guide for laboratory classes and field research. W. Szafer Institute of Botany. Polish Academy of Sciences, Kraków.
  • Call, D. J., Markee, T. P., Geiger, D. L., Brooke, L. T., VandeVenter, F. A., Cox, D. A., & Mount, D. R. (2001). An assessment of the toxicity of phthalate esters to freshwater benthos. 1. Aqueous exposures. Environmental Toxicology and Chemistry: An International Journal, 20, 1798-1804.
  • Cao, W. S., Zhao, M. J., Chen, Y., Zhu, J. Y., Xie, C. F., Li, X. T., Geng, S. S., Zhong, C. Y., Fu, J. Y., & Wu, J. S. (2023). Low-dose phthalates promote breast cancer stem cell properties via the oncogene ΔNp63α and the Sonic hedgehog pathway. Ecotoxicology and Environmental Safety, 252, 114605.
  • Chatterjee, S., & Karlovsky, P. (2010). Removal of the endocrine disrupter butyl benzyl phthalate from the environment. Applied microbiology and biotechnology, 87, 61-73.
  • Chen, Y., Li, C., Song, P., Yan, B., Yang, X., Wu, Y., & Ma, P. (2019). Hepatic and renal tissue damage in Balb/c mice exposed to diisodecyl phthalate: the role of oxidative stress pathways. Food and Chemical Toxicology, 132, 110600.
  • Chen, J., Yang, S., Ma, B., Wang, J., & Chen, J. (2022). Di-isononyl phthalate induces apoptosis and autophagy of mouse ovarian granulosa cells via oxidative stress. Ecotoxicology and Environmental Safety, 242, 113898.
  • Chemical Manufacturers Association. (1999). Comments of the Chemical Manufacturers Association phthalate esters panel in response to request for public input on seven phthalate esters. Chemical Manufacturers Association.
  • dos Santos Morais, G., Vieira, T. B., Santos, G. S., Dolatto, R. G., Cestari, M. M., Grassi, M. T., & da Silva, M. A. N. (2020). Genotoxic, metabolic, and biological responses of Chironomus sancticaroli Strixino & Strixino, 1981 (Diptera: Chironomidae) after exposure to BBP. Science of The Total Environment, 715, 136937.
  • Drábková, M., Matthijs, H. C. P., Admiraal, W., & Maršálek, B. (2007). Selective effects of H2O2 on cyanobacterial photosynthesis. Photosynthetica, 45, 363-369.
  • Ema, M., & Miyawaki, E. (2002). Effects on development of the reproductive system in male offspring of rats given butyl benzyl phthalate during late pregnancy. Reproductive Toxicology, 16, 71-76.
  • Ema, M., Miyawaki, E., Hirose, A., & Kamata, E. (2003). Decreased anogenital distance and increased incidence of undescended testes in fetuses of rats given monobenzyl phthalate, a major metabolite of butyl benzyl phthalate. Reproductive Toxicology, 17, 407-412.
  • Huang, L., Zhu, X., Zhou, S., Cheng, Z., Shi, K., Zhang, C., & Shao, H. (2021a). Phthalic acid esters: Natural sources and biological activities. Toxins, 13, 495.
  • Huang, S., Qi, Z., Ma, S., Li, G., Long, C., & Yu, Y. (2021b). A critical review on human internal exposure of phthalate metabolites and the associated health risks. Environmental Pollution, 279, 116941.
  • Komárek, J. & Anagnostidis, K. (1989). Modern approach to the classification system of Cyanophytes 4 – Nostocales. Algological Studies 56: 247-345.
  • Kuang, Q. J., Zhao, W. Y., & Cheng, S. P. (2003). Toxicity of dibutyl phthalate to algae. Bulletin of environmental contamination and toxicology, 71, 0602-0608.
  • Gobas, F. A., Mackintosh, C. E., Webster, G., Ikonomou, M., Parkerton, T. F., & Robillard, K. (2003). Bioaccumulation of phthalate esters in aquatic food-webs. Series Anthropogenic Compounds, 201-225.
  • Gledhill, W. E., Kaley, R. G., Adams, W. J., Hicks, O., Michael, P. R., Saeger, V. W., & LeBlanc, G. A. (1980). An environmental safety assessment of butyl benzyl phthalate. Environmental Science & Technology, 14, 301-305.
  • Gray Jr, L. E., Ostby, J., Furr, J., Price, M., Veeramachaneni, D. R., & Parks, L. (2000). Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicological Sciences, 58, 350-365.
  • Li, J., Li, H., Lin, D., Li, M., Wang, Q., Xie, S., Zang, J., & Liu, F. (2021). Effects of butyl benzyl phthalate exposure on Daphnia magna growth, reproduction, embryonic development and transcriptomic responses. Journal of Hazardous Materials, 404, 124030.
  • Liu, Y., Guan, Y., Yang, Z., Cai, Z., Mizuno, T., Tsuno, H., & Zhang, X. (2009). Toxicity of seven phthalate esters to embryonic development of the abalone Haliotis diversicolor supertexta. Ecotoxicology, 18, 293-303.
  • Liang, D. W., Zhang, T., Fang, H. H., & He, J. (2008). Phthalates biodegradation in the environment. Applied microbiology and Biotechnology, 80, 183-198.
  • Llorente Ortega, L. (2022). Characterisation of environmental stress biomarkers in Prodiamesa olivacea (Diptera) and their analysis and comparative evaluation in two chironomid species for ecotoxicity studies in natural scenarios.
  • Mao, F., He, Y., Kushmaro, A., & Gin, K. Y. H. (2017). Effects of benzophenone-3 on the green alga Chlamydomonas reinhardtii and the cyanobacterium Microcystis aeruginosa. Aquatic Toxicology, 193, 1-8.
  • Miodovnik, A., Edwards, A., Bellinger, D. C., & Hauser, R. (2014). Developmental neurotoxicity of ortho-phthalate diesters: review of human and experimental evidence. Neurotoxicology, 41, 112-122.
  • Miriyam, I., Anbalagan, K., & Magesh Kumar, M. (2022). Phthalates removal from wastewater by different methods–a review. Water Science and Technology, 85, 2581-2600.
  • National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 2347, Benzyl butyl phthalate. Retrieved October 5, 2023 from https://pubchem.ncbi.nlm.nih.gov/compound/Benzyl-butyl-phthalate.
  • Net, S., Sempéré, R., Delmont, A., Paluselli, A., & Ouddane, B. (2015). Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environmental Science & Technology, 49, 4019-4035.
  • Perron, M. C., & Juneau, P. (2011). Effect of endocrine disrupters on photosystem II energy fluxes of green algae and cyanobacteria. Environmental Research, 111, 520-529.
  • Piersma, A. H., Verhoef, A., te Biesebeek, J., Pieters, M. N., & Slob, W. (2000). Developmental toxicity of butyl benzyl phthalate in the rat using a multiple dose study design. Reproductive Toxicology, 14, 417-425.
  • Planelló, R., Herrero, O., Martínez-Guitarte, J. L., & Morcillo, G. (2011). Comparative effects of butyl benzyl phthalate (BBP) and di (2-ethylhexyl) phthalate (DEHP) on the aquatic larvae of Chironomus riparius based on gene expression assays related to the endocrine system, the stress response, and ribosomes. Aquatic toxicology, 105, 62-70.
  • Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111, 1-61.
  • Semenov, A. A., Enikeev, A. G., Babenko, T. A., Shafikova, T. N., & Gorshkov, A. G. (2021). Phthalates-a strange delusion of ecologists. Теоретическая и прикладная экология, (1), 16-21.
  • Stankovic, R. N. (2020). Phytoplankton influence on benthic macroinvertebrates of freshwater ecosystems in multistress conditions: laboratory testing of the toxic effect of cyanobacteria and green microalgae on individuals of the species Chironomus riparius. Doctoral dissertation. University of Niš, Faculty of Mathematics and Natural Siences.
  • Stanković, N., Jovanović, B., Kokić, I. K., Piperac, M. S., Simeunović, J., Jakimov, D., Dimkić, I., & Milošević, D. (2022). Toxic effects of a cyanobacterial strain on Chironomus riparius larvae in a multistress environment. Aquatic Toxicology, 253, 106321.
  • Staples, C. A., Peterson, D. R., Parkerton, T. F., & Adams, W. J. (1997). The environmental fate of phthalate esters: a literature review. Chemosphere, 35, 667-749.
  • Sun, C., Zhang, G., Zheng, H., Liu, N., Shi, M., Luo, X., Chen, L., Li, F., & Hu, S. (2019). Fate of four phthalate esters with presence of Karenia brevis: uptake and biodegradation. Aquatic Toxicology, 206, 81-90.
  • Touliabah, H. E. S., El-Sheekh, M. M., Ismail, M. M., & El-Kassas, H. (2022). A review of microalgae-and cyanobacteria-based biodegradation of organic pollutants. Molecules, 27, 1141.
  • Tsai, C. F., Hsieh, T. H., Lee, J. N., Hsu, C. Y., Wang, Y. C., Lai, F. J., & Kuo, P. L. (2014).
  • Benzyl butyl phthalate induces migration, invasion, and angiogenesis of Huh7 hepatocellular carcinoma cells through nongenomic AhR/G-protein signaling. BMC cancer, 14, 1-13.
  • Wang, Z., Hu, F., Song, W., Guo, J., He, W., & Ding, F. (2011). Chronic toxic effect of three estrogens to algae (Scenedesmus obliquus). In Proceedings 2011 International Conference on Human Health and Biomedical Engineering (pp. 877-880). IEEE.
  • Wang, Q., Yao, X., Jiang, N., Zhang, J., Liu, G., Li, X., Wang, C., Yang, Z, Wang, J., Zhu, L., & Wang, J. (2023). Environmentally relevant concentrations of butyl benzyl phthalate triggered oxidative stress and apoptosis in adult zebrafish (Danio rerio) liver: Combined analysis at physiological and molecular levels. Science of The Total Environment, 858, 160109.
  • World Health Organization. (1999). Butyl benzyl phthalate.
  • Yan, H., Pan, G., & Liang, P. L. (2002). Effect and mechanism of inorganic carbon on the biodegradation of dimethyl phthalate by Chlorella pyrenoidosa. Journal of Environmental Science and Health, Part A, 37, 553-562.
  • Zhang, X., Liu, L., Zhang, S., Pan, Y., Li, J., Pan, H., Xu., S., & Luo, F. (2016). Biodegradation of dimethyl phthalate by freshwater unicellular cyanobacteria. BioMed research international, 2016, 5178697.