Polyphenolic profile of selected varieties of Serbian berries

Chemia Naissensis Volume 5, No.1 (2022) (стр. 24-42) 

АУТОР(И) / AUTHOR(S): Jelena Mrmošanin, Milena Nikolić, Milan Mitić, Snežana Tošić, Aleksandra Pavlović

Е-АДРЕСА / E-MAIL: milena.ivanovic@pmf.edu.rs

Download Full Pdf   

DOI: 10.46793/ChemN5.1.24M

САЖЕТАК / ABSTRACT:

Selected varieties of strawberries, blackberries, and blueberries grown in Serbia have been analyzed, and their polyphenolic profile was determined by HPLC analysis. The occurrence of phenolic acids, flavonols, and anthocyanins has been examined. Caffeic, p-coumaric, ferulic, and ellagic acid were identified and quantified. Six flavonols have been identified in berry samples: quercetin, quercetin-glucoside, quercetin-galactoside, kaempferol, kaempferol-glucoside, and rutin. The following anthocyanins were found in strawberries: pelargonidin-glucoside, pelargonidin-rutinoside, cyanidin-glucoside, and cyanidin-malonylglucoside. Cyanidin-glucoside, cyanidin-rutinoside, and cyanidin-malonylglucoside were found in blackberry samples. The following anthocyanins were found in blueberries: delphinidin-galactoside, delphinidin-glucoside, delphinidin-arabinoside, cyanidin-galactoside, cyanidin-glucoside, cyanidin-arabinoside, petunidin-arabinoside, petunidin-galactoside, peonidin-galactoside, and malvidin-galactoside. Statistical multivariate method – principal component analysis (PCA) was used to classify phenolic acids, flavonols, and anthocyanins according to their contents in berry samples. Cluster analysis (CA) was used to classify samples based on the individual polyphenolics content.

КЉУЧНЕ РЕЧИ / KEYWORDS:

anthocyanins, flavonols, phenolic acids, HPLC, berry fruits, PCA analysis

ЛИТЕРАТУРА / REFERENCES:

  • Bae, H-S., Kim, H. J., Kang, J. H., Kudo, R., Hosoya, T., Kumazawa, S., Jun, M., Kim, O-Y., & Ahn, M-R. (2015). In vitro and in vivo antiangiogenic activity of crowberry (Empetrum nigrum var. japonicum). Natural Product Communications, 10(6), 963-968.
  • Bagdatlioglu, N., Nergiz, C., & Ergonul, P. G. (2010). Heavy metal levels in leafy vegetables and some selected fruits. Journal für Verbraucherschutz und Lebensmittelsicherheit, 2010, 5(3), 421- 428.
  • Bell, D. R., & Gochenaur, K. (2006). Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. Journal of Applied Physiology, 100(4), 1164-1170.
  • Bobinaite, R., Viškelis, P., & Venskutonis, P. (2012). Variation of total phenolics, anthocyanins, ellagic acid, and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chemistry, 132(3), 1495-1501.
  • Coates, E. M., Popa, G., Gill, C. I., McCann, M. J., Mc Dougall, G. J., Stewart, D., & Rowland, I. (2007). Colon-available raspberry polyphenols exhibit anti-cancer effects on in vitro models of colon cancer. Journal of Carcinogenesis, 6(1), 4-15.
  • Delgado-Vargas, F., Jiménez-Aparicio, A., & Paredes-Lopez, O. (2000). Natural pigments: carotenoids, anthocyanins, and betalains-characteristics, biosynthesis, processing, and stability. Critical Review of Food Science and Nutrition, 40(3), 173-289.
  • Đurić, M., Mašković, P., Murtić, S., Valjković, B., Ćurčić, S., Paunović, G., & Bošković Rakočević, B. (2014). Quantitation of ellagic acid in blackberries. Hemijska Industrija, 68(2), 241- 245.
  • Fang-Chiang, H-J., & Wrolstad, R. E. (2005). Anthocyanin pigment composition of blackberries. Food Chemistry and Toxicology, 70(3), C198-C202.
  • Grembecka, M., & Szefer, P. (2013). Comparative assessment of essential and heavy metals in fruits from different geographical origins. Environmental Monitoring and Assessment, 185(9), 9139-9160.
  • Guedes M. N. S., Abreu, C. M. P., Maro, L. A. C., Pio, R., Abreu, J. R., & Oliveira, J. O. (2013). Antioxidant activity and total phenol content of blackberries cultivated in a highland tropical climate. Acta Scientiarum – Agronomy, 35(2), 191-196.
  • Hakala, M., Lapveteläinen, A., Huopalahti, R., Kallio, H., & Tahvonen, R. (2003). Effects of varieties and cultivation conditions on the composition of strawberries. Journal of Food Composition and Analysis, 16(1), 67-80.
  • Häkkinen, S. H., & Törrönen, A. R. (2000). Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: influence of cultivar, cultivation site, and technique. Food Research International, 33(6), 517-524.
  • Häkkinen, S. H., Kärenlampi, S. O., Heinonen, M. I., Mykkanen, H. M. & Törrönen, A. R. (1999). Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. Journal of Agricultural and Food Chemistry, 47(6), 2274-2279.
  • Ivanović, J., Tadić, V., Dimitrijević, S., Stamenić, M., Petrović, S., & Zizović, I. (2014). Antioxidant properties of the anthocyanin-containing ultrasonic extract from blackberry cultivar „Čačanska Bestrna“. Industrial Crops and Products, 53, 274-281.
  • Jakobek, L., Šeruga, M., Novak, M., & Medvidović-Kosanović, M., (2007). Anthocyanin content and antioxidant activity of various red fruit juice. Deutsche Lebensmittel-Rundschau: Zeitschrift für Lebensmittelkunde und Lebensmittelrecht, 2007, 103(8), 1-10.
  • Kim, Y. J., Seo, S. G., Choi, K., Kim, J. E., Kang, H., Chung, M. Y. & Lee, H. J. (2014). Recovery effect of onion peel extract against H2O2-induced inhibition of gap-junctional intercellular communication is mediated through quercetin. Journal of Food Science, 79(5), H1011-H1017.
  • Khan, M. N., Sarwar, A., Bhutto, S., & Wahab, M. F. (2010). Physicochemical characterization of the strawberry samples on regional basis using multivariate analysis. International Journal of Food Properties, 13(4), 789-799.
  • Ko, M. J., Cheigh, C. I., Cho, S. W., & Chung, M. S. (2011). Subcritical water extraction of flavonol quercetin from onion skin. Journal of Food Engineering, 102(4), 327-333.
  • Li, D., Zhang, Y., Liu, Y., Sun, R., & Xia, M. (2015). Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. Journal of Nutrition, 145(4), 742-748.
  • Mattioli, R., Francioso, A., Mosca, L., & Silva, P. (2020). Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules, 25(17), 3809.
  • Mattila, P., Hellström, J., & Törrönen, R. (2006). Phenolic acids in berries, fruits, and beverages. Journal of Agricultural and Food Chemistry, 54(19), 7193-7199.
  • Miyake, S., Takahashi, N., Sasaki, M., Kobayashi, S., Tsubota, K., & Ozawa, Y. (2012). Vision preservation during retinal inflammation by anthocyanin-rich bilberry extract: cellular and molecular mechanism. Laboratory Investigation, 92, 102-109.
  • Mikulic-Petkovsek, M., Slatnar, A., Stampar, F. & Veberic, R. (2012). HPLC-MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chemistry, 135(4), 2138-2146.
  • Mullen, W., McGinn, J., Lean, M. E. J., MacLean, M. R., Gardner, P., Duthie, G. G., Zokota, T., & Croyier, A. (2002). Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. Journal of Agricultural and Food Chemistry, 50(18), 5191-5196.
  • Nile, S.H., & Park, S.W. (2014). Edible berries: bioactive components and their effect on human health. Nutrition, 30, 134-144.
  • Numata, Y., & Tanaka, H. (2011). Quantitative analysis of quercetin using Raman spectroscopy. Food Chemistry, 126(2), 751-755.
  • Nyman, A., & Kumpulainen, J. (2001). Determination of anthocyanidins in berries and red wine by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry, 49(9), 4183-4187.
  • Okatan, V. (2020). Antioxidant properties and phenolic profile of the most widely appreciated cultivated berry species: A comparative study. Folia Hortculturae, 32(1), 79-85.
  • Paredes-López, O., Cervantes-Ceja, M.L., Vigna-Pérez, M., & Hernández-Pérez, T. (2010). Berries: improving human health and healthy aging, and promoting quality life-a review. Plant Foods for Human Nutrition, 65(3), 299-308.
  • Roewer, N., & Broscheit, J. (2013a). Use of delphinidin against Staphylococcus aureus, U.S. Patent Application No. 14/389,492.
  • Roewer., N., & Broscheit, J. (2013b). Delphinidin complex as an antiphlogistic or immunosuppressive active ingredient, U.S. Patent Application No. 14/443,166.
  • Roy, S., Khanna, S., Alessio, H.M., Vider, J., Bagchi, D., Bagchi, M., & Sen, C. (2002). Anti- angiogenic property of edible berries. Free Radical Research, 36(9), 1023-1032.
  • Rupashinge, H. P., Kathirvel, P. & Huber, G. (2011). Ultrasonication-assisted solvent extraction of quercetin glycosides from ‘Idared’ apple peels. Molecules, 16(12), 9783-9791.
  • Singh, K., Khanna, A. K., & Chander, R. (1999). Hepatoprotective effect of ellagic acid against carbon tetrachloride induced hepatotoxicity in rats. Indian Journal of Experimental Biology, 37(10), 1025-1026.
  • Szajdek, A., & Borowska, J. E. (2008). Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods for Human Nutrition, 63(4), 147-156.
  • Tsuda, T., Shiga, K., Ohshima, K., Kawakishi, S., & Osawa, T. (1996). Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochemical Pharmacology, 52(7), 1033-1039.
  • Trošt, K., Golc-Wondra, A., Prošek, M., & Milivojevič, L. (2008). Anthocyanin degradation of blueberry-aronia nectar in glass compared with carton during storage. Journal of Food Science, 73(8), S405-S411.
  • Vattem, D. A., & Shetty, K. (2005). Biological functionality of ellagic acid: a rewiev. Journal of Food Biochemistry, 29(3), 234-266.
  • Xue, Y., Lim, S., Bråkenhielm, E., & Cao, Y. (2010). Adipose angiogenesis: quantitative methods to study microvessel growth, regression and remodeling in vivo. Nature Protocols, 5(5), 912-920.
  • Zhao, Y. (2007). Berry fruit: value-added products for health promotion. CRC Press: Boca Raton.