Calculating stabilization energies for aromatic molecules in schools – quantum chemistry, a valuable tool for teaching and education

Chemia Naissensis Volume 5, No.1 (2022) (стр. 1-15) 

АУТОР(И) / AUTHOR(S): Ralph Puchta, Thomas Capponi, Dušan Ćoćić, Basam M. Alzoubi, Ilka Shook


Download Full Pdf   

DOI: 10.46793/ChemN5.1.01P


While aromaticity is one of the most fundamental concepts in chemistry and is taught in many elementary organic chemistry courses, it is hardly possible to activate pupils and students to learn and explore this topic independently. By applying computational chemistry and especially quantum chemistry, we introduce a possibility to activate students, allowing them to test taught concepts and do their own “experiments” cheaply and securely. We have focused in the current report on the structural and energetic aspects of aromaticity, as they are most compatible with other topics of typical chemistry lessons. To evaluate the aromatic stabilization energy, we suggest the simple-to-calculate and easy-to-understand isomerization stabilization energy (ISE) popularized by Paul von Ragué Schleyer and Frank Pühlhofer some 20 years ago. As practical examples, we demonstrate our concept with benzene- and pyridine-based systems and suggest topics for small projects for students and pupils.


aromaticity, computational chemistry experiments, education


  • Aidas, K., Angeli, C., Bak, K. L., Bakken, V., Bast, R., Boman, L., Christiansen, O., Cimiraglia, R., Coriani, S., Dahle, P., Dalskov, E. K., Ekström, U., Enevoldsen, T., Eriksen, J. J., Ettenhuber, P., Fernández, B., Ferrighi, L., Fliegl, H., Frediani, L., Hald, K., Halkier, A., Hättig, C., Heiberg, H., Helgaker, T., Hennum, A. C., Hettema, H., Hjertenæs, E., Høst, S., Høyvik, I.-M., Iozzi, M. F., Jansik, B., Jensen, H. J. A., Jonsson, D., Jørgensen, P., Kauczor, J., Kirpekar, S., Kjærgaard, T., Klopper, W., Knecht, S., Kobayashi, R., Koch, H., Kongsted, J., Krapp, A., Kristensen, K., Ligabue, , Lutnæs, O. B., Melo, J. I., Mikkelsen, K. V., Myhre, R. H., Neiss, C., Nielsen, C., Norman, P., Olsen, J., Olsen, J. M. H., Osted, A., Packer, M. J., Pawlowski, F., Pedersen, T., Provasi, P. F., Reine, S., Rinkevicius, Z., Ruden, T. A., Ruud, K., Rybkin, V., Salek, P., Samson, C. C. M., Sánchez de Merás, A., Saue, T., Sauer, S. P. A., Schimmelpfennig, B., Sneskov, K., Steindal, A. H., Sylvester-Hvid, K. O., Taylor, P. R., Teale, A. M., Tellgren, E. I., Tew, D. P., Thorvaldsen, A. J., Thøgersen, L., Vahtras, O., Watson, M. A., Wilson, D. J. D., Ziolkowski, M., & Ågren, H. (2014). The Dalton quantum chemistry program system. Wiley Interdisciplinary Reviews: Computational Molecular Science, 4, 269–284.
  • Badger, G. M. (1969). Aromatic character and aromaticity. Cambridge: University Press.
  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648-5652.
  • Boldyrev, A. I., & Wang, L.-S. (2005). All-metal aromaticity and antiaromaticity. Chemical Review, 105, 3716-3757.
  • Chattaraj, P. K. (2011). Aromaticity and metal clusters. Boca Raton: CRC Press.
  • Chai J.-D., & Head-Gordon, M. (2008). Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Physical Chemistry Chemical Physics, 10, 6615- 6620.
  • Curtiss, L. A., Raghavachari, K., Redfern, P. C., Rassolov, V., & Pople, J. A. (1998). Gaussian-3 (G3) theory for molecules containing first and second-row atoms. The Journal of Chemical Physics, 109, 7764-7776.
  • Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., & Stewart, J. J. P. (1985). Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, 107, 3902-3909.
  • Dewar, M. J. S., & Schmeising, H. N. (1959). A re-evaluation of conjugation and hyperconjugation: The effects of changes in hybridisation on carbon bonds. Tetrahedron, 5, 166- 178.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A.F. Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B. Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, , Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, Jr., J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith,T. A. Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C. Cammi, R., Ochterski, J. W., Martin, L., Morokuma, K., Farkas, O., Foresman, J. B., & Fox, D. J. (2016). Gaussian 16, Revision A. 03. Gaussian, Inc., Wallingford, CT, USA.
  • Garratt, P. J. (1971). Aromaticity. New York: McGraw-Hill.
  • Gordon, M. S., & Schmidt, M. W. (2005). Advances in electronic structure theory: GAMESS a decade later in Theory and Applications of Computational Chemistry: the first forty years (pp. 1167-1189). Amsterdam: Elsevier.
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics. 4, 17-25.
  • Hehre, W. J., Radom, L., Schleyer, P. v. R., & Pople, J. A. (1986). Ab initio molecular orbital theory. New York: John Wiley.
  • Hennemann, M., Margraf, J. T., Meyer, B., & Clark, T. (2020). EMPIRE20. Cepos InSilico GmbH, Obermichelbach.
  • Hofmann, A. W. (1855). On insolinic acid. Proceedings of the Royal Society, 8, 1–3.
  • Hückel, E. (1931a). Quantentheoretische Beitraäge zum Benzolproblem, I: Die Elektronenkonfiguration des Benzolsund verwandter Verbindungen. Zeitschrift für Physik, 70, 104–186.
  • Hückel, E. (1931b). Quantentheoretische Beiträge zum Benzolproblem, II: Quantentheorie der induzierten Polaritäten. Zeitschrift für Physik, 72, 310–337.
  • Hückel, E. (1932). Beiträge zum Problem der aromatischen und ungesättigten Verbingungen. III. Zeitschrift für Physik, 76, 628–648.
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785-789.
  • McMurry (2021). Organic Chemistry.
  • Mercero, J. M., Boldyrev, A. I., Merino, G., & Ugalde, J. M. (2015). Recent developments and future prospects of all-metal aromatic compounds. Chemical Society Review, 33, 6519-6534.
  • Neese, F. (2012). The ORCA program system. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2, 73–78.
  • Neese, F. (2017). Software update: the ORCA program system, version 4.0. Wiley Interdisciplinary Reviews: Computational Molecular Science. 8, e1327.
  • People, J. A., & Untch, K. G. (1966). Induced paramagnetic ring currents. Journal of the American Chemical Society, 88, 4811-4815.
  • Price, C. C. (1936). A Study of the phenanthrene – bromine addition reaction. Journal of the American Chemical Society, 58, 1834-1838.
  • Schaller (2021). C. Book: Structure & Reactivity in Organic, Biological and Inorganic Chemistry. y_in_Organic_Biological_and_Inorganic_Chemistry_(Schaller)
  • Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M., & Montgomery,
  • (1993). General atomic and molecular electronic structure system. Journal of Computational Chemistry, 14, 1347-1363.
  • Schleyer, P. R., & Haijun, J. (1996). What is aromaticity? Pure and Applied Chemistry, 68, 209- 218.
  • Schleyer, P. R., & Pühlhofer, F. (2002). Recommendations for the evaluation of aromatic stabilization energies. Organic Letters, 4, 2873-2876.
  • Simpson, S., Evanoski-Cole, A., Gast, K., Wedvik, M. C., Schneider, P. W., & Klingensmith I. (2020). Quantum chemical exercise linking computational chemistry to general chemistry topics. Chemistry Teacher International, 3.
  • Stephens, P. J., Devlin, F. J., Chabalowski, C. F., & Frisch, M. J. (1994). Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. The Journal of Physical Chemistry, 98, 11623–11627.
  • Stewart, J. J. P. (2016). MOPAC2016. Stewart Computational Chemistry. Colorado Springs, CO, USA, HTTP://
  • Thomas A. H. (1996). Merck molecular force field I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 490-519.
  • Wannere, C. S., & von Schleyer, P. R. (2003). How aromatic are large (4n + 2) π annulenes? Organic Letters, 5, 865-868.
  • Weigend F., & Ahlrichs R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7, 3297-3305.
  • Weigend, F. (2006). Accurate Coulomb-fitting basis sets for H to Rn. Physical Chemistry Chemical Physics, 8, 1057-1065.
  • Wheland, G. W. (1955). Resonance in organic chemistry. New York: Wiley.