Investigation of Electrochemical Behavior of Mordant Dye (C.I. 17135) at Glassy Carbon and Silver Electrodes

Chemia Naissensis Volume 4, No.1 (2021) (стр. 89-104) 



Download Full Pdf   

DOI: 10.46793/ChemN4.1.89M


In this study, the electrochemical behaviour of Mordant dye (C.I. 17135) was investigated in Britton-Robinson (BR) buffer (pH 2.0-12.0) media by using different voltammetric techniques: square wave voltammetry (SWV), cyclic voltammetry (CV), differential pulse voltammetry (DPV) and direct current voltammetry (DCV). The electrochemical behavior of the dye has been investigated by using a glassy carbon electrode (GCE) and silver electrode (SE). The brode peak of the azo dye occurred at SW and DP voltammograms, is due to its adsorption on the glassy carbon and silver electrode surfaces. Two reduction peaks were observed at pH < 9.5, and one reduction peak was observed at pH > 9.5 for SWV and DPV techniques at a glassy carbon electrode. From the voltammetric data electrochemical reaction mechanism of the azo dye has been suggested at glassy carbon and silver electrodes.


Azo compound, Mordant dyes, Voltammetry, Reaction mechanism.


  • Abu-El-Wafa, S. M., El-Wakiel, N. A., Issa, R. M.,& Mansour, R. A. (2005). Formation of novel mono- and multi-nuclear complexes of Mn(II), Co(II) and Cu(II) with bis azo-dianils containing the pyrimidine moiety: Thermal, magnetic and spectral studies. Journal of Coordination Chemistry, 58, 683-694.
  • Ali, N. F., EL-Khatib, E. M., Saadia, A.,& El-Megied A. (2019). Modification of wool and silk fibers by pretreatment with quaternary ammonium salt and dyeing with new metal complex dye. World Journal of Pharmaceutical and Life Sciences, 5, 73-79.
  • Bard, A. J. & Faulkner, L. R. (1980). Electrochemical Methods, JohnWiley & Sons, New York.
  • Chandra, U., Gilbert, O., Kumara Swamy, B. E., Bodke, Y. D., & Sherigara, B. S. (2008). Electrochemical studies of Eriochrome Black T at carbon paste electrode and immobilized by SDS surfactant: A cyclic voltammetric International Journal of Electrochemical Science, 3, 1044-1054.
  • Char, M. P., Niranjana, E., Kumara Swamy, B. E., Sherigara, B. S., & Pai, V. (2008). Electrochemical studies of Amaranth at surfactant modified carbon paste electrode: A cyclic voltammetry. International Journal of Electrochemical Science, 3, 588-596.
  • Ding, Y.& Freeman, H. S. (2017). Mordant Dye application on cotton: optimisation and combination with natural dyes. Coloration Technology, 133, 369-375.
  • Eriksson, A.,& Nyholm, L. (2001). Coulometric and spectroscopic investigations of the oxidation and reduction of some azosalicylic acids at glassy carbon Electrochimaca Acta, 496, 1113-1129.
  • Guaratini, C. I., Fogg, A. G., & Zanoni, M. V. B. 2001. Studies of the Voltammetric Behavior and Determination of Diazo Reactive Dyes at Mercury Electrode. Electroanalysis, 13, 1535- 1543.
  • Hattori, T., Tsurumi, N., Kato R., & Nakayama M. (2006). Adsorptive voltammetry of 2-(5- bromo-2-pyridyl)azo-5-[N-n-propyl-N-(3sulfopropyl)amino]phenol on a carbon pasteelectrode in the presence of organic cations and polycation. Analytical Science, 22, 1577-1580.
  • Karaman, , & Menek, N. (2012). Investigation of electrochemical behavior of 2-(5-bromo-2- pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amino]phenol disodium salt dihydrate. Journal of the Electrochemical Society, 159, H805-H810.
  • Karaman, (2014). Investigation of electrochemical behavior of Calmagite at a glassy carbon electrode. Dyes and Pigments,106, 39-44.
  • Lucilha, A. C., Bonancêa, C. E., Barretoc, W. J., & Takashima, K. (2010). Adsorption of the Diazo Dye Direct Red 23 onto a zinc oxide surface: A spectroscopic study. Spectrochimica Acta Part A, 75, 389-393.
  • Ma, M. M., & Song, J. F. (2008). Square wave voltammetric label-free determination of the natural protein material silk fibroin. Chinese Journal of Chemistry, 26, 2081-2085.
  • Meites, L. (1965). Polarographic Techniques. John Wiley & Sons, New York.
  • Menek, N. (1998). Polarographic and voltammetric behaviour of 2-hydroxy-3-methoxy-5-(2- propenyl)azobenzene. Analytical Letters, 31, 275-282.
  • Mirceski, V., & Lovri, M. (2004). EC mechanism of an adsorbed redox couple. Volume vs surface chemical reaction. Journal of Electroanalytical Chemistry, 565, 191-202.
  • Pervez, M. N., Telegin, F. Y., Cai, Y., Dongsheng, Xia, D., Zarra, T., & Naddeo, V. (2019). Efficient degradation of Mordant Blue 9 using the fenton-activated persulfate system. Water, 11, 2532-2546.
  • Romanini, D. C., Trindade, M. G. A., & Zanoni, M. V. B. (2009). A simple electroanalytical method for the analysis of the dye solvent orange 7 in fuel ethanol. Fuel, 88: 105-109.
  • Socha, A., Sochocka, E., Podsiad1y, R., & Soko1owska, J. (2007). Electrochemical and photoelectrochemical treatment of C.I. Acid Violet 1. Dyes and Pigments, 73, 390-393.
  • Sun, W., Jiang, H., & Jiao, K. (2005). Electrochemical determination of hydrogen peroxide using o-dianisidine as substrate and hemoglobin as catalyst, Journal of Chemical Science, 117, 317–322.
  • Tvorynska, S., Josypcuk, B., Jiri Barek, J., & Liliya Dubenska, L. (2019). Electrochemical behavior and sensitive methods of the voltammetric determination of food azo dyes Amaranth and Allura Red AC on amalgam electrodes. Food Analytical Methods, 12, 409-421.
  • Yıldız, , & Boztepe, H. (2002). Synthesis of novel acidic mono azo dyes and an investigation of their use in the textile industry. Turkish Journal of Chemistry, 26, 897-903.
  • Yu, J., Jia, J., & Ma, Z. (2004). Comparison of electrochemical behavior of hydroxyl- substituted and nonhydroxyl-substituted azo dyes at a glassy carbon electrode. Journal of the Chinese Chemical Society, 51, 1319-1324.
  • Zuman, P., & Perin, C. L. (1965). Organic Polarography. John Wiley & Sons, New York.