Performing EDA Techniques for Time Series Forecasting in Smart Cities

Proceedings of International Scientific Conference „ALFATECH – Smart Cities and modern technologies“ (pp. 122-129) 

 

АУТОР(И) / AUTHOR(S): Ninoslava TIHI , Miloš TODOROV , Marko PAVLOVIĆ , Filip KOKALJ

 

Download Full Pdf   

DOI:  10.46793/ALFATECHproc25.122T

САЖЕТАК / ABSTRACT:

In the age of smart cities, where interconnected technologies produce substantial data, time series forecasting has become a crucial instrument for efficient urban management. Exploratory Data Analysis (EDA) is an essential initial phase in comprehending and organising data for precise and insightful predictions. This study examines the utilisation of exploratory data analysis approaches for time series data in the framework of smart cities. It emphasises techniques for detecting trends, seasonality, autocorrelations, and correlations in data streams from sources like environmental monitoring systems. The research investigates ways to identify patterns, test hypotheses, and confirm assumptions using visual and quantitative methods. Employing diverse visualisation tools, statistical summaries, and decomposition techniques enhances the comprehension and preprocessing of time series datasets. The objective of the research is to perform and evaluate the efficacy of standard tools such as time plots, autocorrelation and correlation analysis, seasonality decomposition, and identifying trend patterns in conjunction with sophisticated techniques such as seasonal decomposition of time series (STL), correlation heatmaps, and trend detection techniques. The findings emphasise EDA’s significance as a fundamental step in empowering researchers and practitioners to make informed decisions, ensuring strong analytical results, and developing resilient time-series forecasting models for contemporary urban issues.

КЉУЧНЕ РЕЧИ / KEYWORDS:

EDA techniques; environmental data; preprocessing time series; smart cities; time series forecasting

ПРОЈЕКАТ / ACKNOWLEDGEMENT:

ЛИТЕРАТУРА / REFERENCES:

  • Kousis, A. &Tjortjis, C. (2021). Data Mining Algorithms for Smart Cities:A Bibliometric Analysis. Algorithms, 14(8), pp.242, doi: 10.3390/a14080242
  • Chen, D., Zhang, J. & Jiang, S. (2020). Forecasting the Short-Term Metro Ridership With Seasonal and Trend Decomposition Using Loess and LSTM Neural Networks, IEEE Access, vol. 8, pp. 91181–91187, 2020, doi: 10.1109/ACCESS.2020.2995044
  • Sarker, I. H. (2022). Smart City Data Science: Towards data-driven smart cities with open research issues, Internet of Things, vol. 19, pp. 100528, doi: 10.1016/j.iot.2022.100528
  • Strohbach, M., Ziekow, H., Gazis, V. & Akiva, N. (2014). Towards a Big Data Analytics Framework for IoT and Smart City Applications’,book:Modeling and Processing for Next-Generation Big-Data Technologies, Editors: Xhafa, F., Barolli, L., Barolli A. & Papajorgji, P. Springer International Publishing, pp. 257–282. doi: 10.1007/978-3-319-09177-8_11.
  • Shorfuzzaman, M. & Hossain, М. S. (2022). Predictive Analytics of Energy Usage by IoT-Based Smart Home Appliances for Green Urban Development, ACM Trans. Internet Technol., 22(2), pp. 1–26, doi: 10.1145/3426970.
  • Murugan, R. & Palanichamy, N. (2021). Smart City Air Quality Prediction using Machine Learning, 5th International Conference on Intelligent Computing and Control Systems (ICICCS), India:IEEE, pp.1048–1054, doi: 10.1109/ICICCS51141.2021.9432074
  • Auffarth, B. (2021). Machine Learning for Time-Series with Python, Packt Publishing, Birgmingham, the UK, ISBN 978-1-80181-962-6.
  • Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice, 3nd edition, OTexts: Melbourne, Australia. OTexts.com/fpp2. Accessed on 28.01.2025.
  • Gakhov, A. V. (2018).An Introduction to Time Series Forecasting with Python,   PyCon UA 2018, Kharkov, Ukraine. DOI: 10.13140/RG.2.2.18053.86249.
  • Cleveland, R. B., Cleveland, W. S., McRae, J. E., &Terpenning, I. J. (1990). STL: A Seasonal-Trend Decomposition Procedure Based on Loess.Journal of Official Statistics; Stockholm, Statistics Sweden (SCB), 6(1), pp.3-73, ISSN 0282423X.
  • https://cran.rproject.org/web/packages/funtimes/vignettes/trendtests. html,  accessed 28.01.2025.
  • Alhaji, U. U., Yusuf, A. S., Edet, C. O., Oche, C. O., &Agbo, E. P. (2018). Trend Analysis of Temperature in Gombe State Using Mann Kendall Trend Test.Journal of Scientific Research and Reports, 20(3), pp.1-9, ISSN: 2320-0227, DOI: 10.9734/JSRR/2018/42029
  • Gauthier, T. D., Hawley, M. E. (2015). Introduction to Environmental Forensics (Third Edition); Chapter 5 – Statistical Methods. Academic Press; Editor(s): Brian L. Murphy, Robert D. Morrison, pp. 99-148, ISBN 9780124046962, https://doi.org/10.1016/B978-0-12-4046962.00005-9.
  • Mohr, D. L., Wilson, W. J., Freund, R.J. (2022). Statistical Methods (Fourth Edition), Chapter 14 – Nonparametric Methods. Academic Press; Editor(s): Donna L. Mohr, William J. Wilson, Rudolf J. Freund, pp. 651-683,               ISBN 9780128230435,  https://doi.org/10.1016/B978-0-12-823043-5.00014-X.
  • Canova, F. & Hansen, B. E. (1995). Are Seasonal Patterns Constant Over Time? A Test for Seasonal Stability. Journal of Business & Economic Statistics, 13(3), pp.237–252. https://doi.org/10.1080/07350015.1995.10524598
  • Tihi, N., Popov, S., Bondžić, J. & Dujović, M. (2021). Visualization of Big Data as Urban Drought MOonitoring Support in Smart Cities, Fresenius Еnvironmental Bulletin (FEB), 30(01), pp. 719–723.
  • Tihi, N.&Popov, S. (2023). Selection of the Best ARIMA models for Urban Drought Prediction, Fresenius Environmental Bulletin (FEB), 32(06), pp.2564–2572.
  • Tihi, N. & Popov, S. (2024). A Comparison of Arima and Random Forest Time Series Models for Urban Drought Prediction, in Proceedings of the International Scientific Conference – Sinteza 2024, Beograd, Serbia: Singidunum University, pp. 51–56. doi: 10.15308/Sinteza-2024-51-56.