Exploring nanofertilizers: innovations for precision agriculture and nutrient management

7th International Scientific Conference Modern Trends in Agricultural Production, Rural Development and Environmental Protection (2025) [pp. 57-71]  

AUTHOR(S) / AUTOR(I): Monika Stojanova , Dragutin A. Đukić , Marina T. Stojanova , Alexander M. Semenov , Blazo Lalević

Download Full Pdf   

DOI: 10.46793/7thMTAgricult.05s

ABSTRACT / SAŽETAK:

Nanofertilizers mark a significant breakthrough in agricultural practices, offering innovative solutions for nutrient transport and regulation from the soil to plants. Essential nutrients like nitrogen, phosphorus, potassium, sulfur, calcium, magnesium, manganese, copper, zinc, iron, and molybdenum promote healthy plant growth and ensure successful crop production. Fertilization has been a core agricultural practice since its origins, driven by the need to boost crop yield and quality. The advent of nanofertilizers introduces a transformative shift, paving the way for next-generation fertilizers. These advanced solutions are not only cost-efficient but also enhance soil’s chemical and physical properties, such as improving water retention. Additionally, plants treated with nanofertilizers demonstrate increased yields, superior quality, and enhanced resilience to both biotic and abiotic stress factors. This review aims to underscore the significance of nanofertilizers in modern agricultural practices by comparing them with conventional fertilizers, emphasizing their advantages, their role in improving crop quality and productivity, and their potential contribution to environmental sustainability.

KEYWORDS / KLJUČNE REČI:

nanofertilizers, nanotechnology in agriculture, sustainable agricultural production, next-generation fertilizers, nutrient transport

ACKNOWLEDGEMENT / PROJEKAT:

REFERENCES / LITERATURA:

  • Abdel-Aziz, H.M.M., Hassaneen, M.N.A., & Omer, A.M. (2016). Nano chitosan-NPK fertilize enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal of Agricultural Research, 14, 1–9.
  • Abobatta, W.F. (2018). Over view of nano-fertilizers. Asian J. Ethnopharma. Med. Foods, 4, 17–20.
  • Agnihotri, R., & Tyagi, D.B. (2023). Effect of nano-fertilizer and conventional fertilizer on the growth, yield and yield attributes of sesame (Sesamum indicum L.). Lambert Academic Publishing. UK.
  • Ahmed, R., Uddin, M.K., Quddus, M.A., Samad, M.Y.A., Hossain, M.M., & Haque, A.N.A., (2023). Impact of foliar application of Zinc and Zinc oxide nanoparticles on growth, yield, nutrient uptake and quality of Tomato. Horticulturae, 9(2), 162.
  • Ardali T. R., Soleimanpour L., Ma’mani L., & Chorom M. (2024). Opportunities and future perspective of nanofertilizers and controlled release nanofertilizers in agriculture. J. Water Environ. Nanotechnol., 9(2), 223–247. https://doi.org/10.22090/jwent.2024.02.08
  • Awan, S., Shahzadi, K., Javad, S., Tariq, A., Ahmad, A., & Ilyas, S. (2021). A preliminary study of the influence of zinc oxide nanoparticles on growth parameters of Brassica oleracea var italic. J. Saudi Soc. Agric. Sci., 20(1), 18–24.
  • Azim, Z., Singh, N.B., Singh, A., Amist, N., Niharika Khare, S., Yadav, R.K., Bano, C., & Yadav, V. (2023). A review summarizing uptake, translocation and accumulation of nanoparticles within the plants: Current status and future prospectus. J. Plant Biochem. Biotechnol. 32, 211–224.
  • Babu, S.R., Joseph, M., Hemalatha, M., Bhuvaneswaei, J., Srinivasan, S., & Leninraja, D. (2024). Nano-fertilizers: The future of nutrient approaches for cereals. Indian Journal of Agricultural Sciences, 94(11): 1155–1164. https://doi.org/10.56093/ijas.v94i11.150587
  • Babu, S., Singh, R., Yadav, D., Rathore, S. S., Raj, R., Avasthe, R., Yadav, S. K., Das, A., Yadav, V., Yadav, B., Shekhawat, K., Upadhyay, P. K., Yadav, D. K., & Singh, V. K. (2022). Nanofertilizers for agricultural and environmental sustainability. Chemosphere, 292, 133451. https://doi.org/10.1016/ j.chemosphe re.2021.133451
  • Bhardwaj, A.K., Arya, G., Kumar, R., Hamed, L., Pirasteh-Anosheh, H., Jasrotia, P., & Singh, G.P. (2022). Switching to nano nutrients for sustaining agroecosystems and environment: the challenges and benefits of moving from ionic to particle feeding. J. Nanobiotechnol., 20(1), 1–28.
  • Chhipa, H. (2017). Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett., 15, 15–22. https://doi.org/10.1007/s10311-016-0600-4
  • Cui, H.X., Sun, C.J., Liu, Q., Jiang, J., & Gu, W. (2010). Applications of nanotechnology in agrochemical formulation: perspectives, challenges and strategies. In International Conference on Nanoagri, Sao Pedro, Brazil. pp 28–33.
  • da Silva Júnior, A.H., Mulinari, J., Reichert Júnior, F.W., & de Oliveira, C.R.S. (2020). Nanofertilizers: an overview. In International Agribusiness Congress. Proceedings Book.https://doi.org/10.31692/ICIAGRO.2020.0041
  • Debashis, D., & Anurag, B. (2021). Nano fertilizer on sustainable agriculture – a review. International Journal of Environment and Climate Change, 11(8), 1– 5.
  • El-Ghamry, A., Mosa, A., Alshaal, T., & El-Ramady, H. (2018). Nanofertilizers vs. biofertilizers: new insights. Environment, Biodiversity and Soil Security, 2, 51–72. https://doi.org/10.21608/jenvbs.2018.3880.1029
  • Gade, A., Ingle, P., Nimbalkar, U., Rai, M., Raut, R., Vedpathak, M., Jagtap, P., & Abd Elsalam, K.A. (2023). Nanofertilizers: the next generation of agrochemicals for long-term impact on sustainability in farming systems. Agrochemicals, 2, 257–278. https://doi.org/10.3390/agrochemicals2020017
  • Glotra, A., Singh, M., & Maneesha. (2023). Nanofertilizers: A Review on the Futuristic Technology of Nutrient Management in Agriculture. Agricultural Reviews, 44(2), 238–244. https://cabidigitallibrary.org.by77.29.82.145
  • Huda, A., & Aljanabi, Y. (2021). Effects of nano fertilizers technology on agriculture production. Annals of R.S.C.B.,25(4), 6728 – 6739.
  • Hussain, I., Singh, N.B., Singh, A., Singh, H. & Singh, S.C. (2016). Green synthesis of nanoparticles and its potential application. Biotechnol. Lett., 38(4), 545– 560.
  • Ibrahim, N.K., & Al Farttoosi, H.A.K. (2019). Response of mung bean to boron nanoparticles and spraying stages (Vignaradiata L.). Plant Arch., 19(2), 712–715.
  • Iqbal, M.A. (2019). Nano-fertilizers for sustainable crop production under changing climate: A global perspective. In M. Hasanuzzaman, M.C.M. Teixeira Filho, M. Fujita, & T.A. Rodrigues Nogueira (Eds.), Sustainable crop production. IntechOpen. http://dx.doi.org/10.5772/intechopen.89089
  • Khatri, A., & Bhateria, R. (2022). Efficacy of nanofertilizers over chemical fertilizers in boosting agronomic production. Nature environment and pollution technology. An International Quarterly Scientific Journal. 22, 767–776. https://doi.org/10.46488/NEPT.v22i02.019
  • Kumar, A., Singh, K., Verma, P., Singh, O., Panwar, A., Singh, T., Kumar, Y., & Raliya, R. (2022). Efect of nitrogen and zinc nanofertilizer with the organic farming practices on cereal and oil seed crops. Scientifc Reports 12, 6938. https://doi.org/10.1038/s41598-022-10843-3
  • Madlala, N.C., Khanyile, N., & Masenya, A. (2024). Examining the correlation between the inorganic nano-fertilizer physical properties and their impact on crop performance and nutrient uptake efficiency. Nanomaterials, 14, 1263. https://doi.org/10.3390/nano14151263
  • Manzoor, M.A., Xu, Y., Iv, Z., Xu, J., Wang, Y., Sun, W., Liu, X., Wang, L., Usman, Jiyuan, M., Wang, Liu, R., Whiting, D.M., Songtao, J., & Zhan, C. (2024). Nanotechnology-based approaches for promoting horticulture crop growth, antioxidant response and abiotic stresses tolerance. Plant Stress,11, 100337. https://doi.org/10.1016/j.stress.100337
  • Mahesha, K.N., Singh, N.K., Amarshettiwar, S.B., Singh, G., Gulaiya, S., Das, H., & Kumar, J. (2023). Entering a new agricultural era through the impact of nano-fertilizers on crop development: a review. International Journal of Plant & Soil Science, 35(20), 94–102.  https://doi.org/10.9734/IJPSS/ 2023/v35i203789
  • Mittal, D., Kaur, G., Singh, P., Yadav, K., & Ali, S.A. (2020). Nanoparticle-based sustainable agriculture and food science: recent advances and future outlook. Front. Nanotechnol, 2(10).https://doi.org/10.3389/fnano.2020.579954
  • Mohanraj, J., Subramanian, K., & Lakshmanan, A. (2019). Role of nano-fertilizer on greenhouse gas emission in rice soil ecosystem. Madras Agricultural Journal, 106.https://doi.org/10.29321/ MAJ.2019.000327
  • Nongbet, A., Mishra, A.K., Mohanta, Y.K., Mahanta, S., Ray, M.K., Khan, M., Baek, K.-H., & Chakrabartty, I. (2022). Nanofertilizers: a smart and sustainable attribute to modern agriculture. Plants, 11, 2587. https://doi.org/10.3390/plants11192587
  • Pourjafar, L., Zahedi, H., & Sharghi, Y. (2016). Effect of foliar application of nano iron and manganese chelated on yield and yield component of canola (Brassica napus L.) under water deficit stress at different plant growth stages. Agricultural Science Digest. 36(3), 172–178.
  • Popko, M., Michalak, I., Wilk, R., Gramza, M., Chojnacka, K., & Górecki, H. (2018). Effect of the new plant growth biostimulants based on amino acids on yield and grain quality of winter wheat. Molecules, 23(2), 470.
  • Preetha, P.S, & Balakrishnan, N. (2017). A review of nano fertilizers and their use and functions in soil. Int. J. Curr. Microbiol. Appl. Sci., 6, 3117–3133.
  • Qureshi, A., Singh, D.K. & Dwivedi, S. (2018). Nano-fertilizers: A novel way for enhancing nutrient use efficiency and crop productivity. Int. J. Curr. Microbiol. App. Sci., 7(2), 3325–3335.
  • Rana, L., Kumar, M., Rajput, J., Kumar, N., Sow, S., Kumar, S., Kumar, A., Singh, S.N., Jha, C.K., Singh, A.K., Ranjan, Ritwik, S., Samanta, D., Nath, D., Panday, R., & Raiga, B.L. (2024). Nexus between nanotechnology and agricultural production systems: challenges and future prospects. Discover Applied Sciences. https://doi.org/10.1007/s42452-024-06265-7.
  • Rana, R.A., Siddiqui, M.N., Skalicky, M., Brestic, M., Hossain, A., Kayesh, E., Popov, M., Hejnak, V., Gupta, D.R., Mahmud, N.U., et al. (2021). Prospects of nanotechnology in improving the productivity and quality of horticultural crops. Horticulturae, 7, 332. https:// doi.org/10.3390/horticulturae7100332.
  • Rahman, K.M.A., & Zhang, D. (2018). Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability, 10, 759.
  • Shuqin, J., & Fang, Z. (2018). Zero growth of chemical fertilizer and pesticide use: China’s objectives, progress and challenges. J. Resour. Ecol., 9(1), 50–58.
  • Stojanova, T.M., Djukic, D.A., Stojanova, M., Boskovic, I. (2024). Effect of foliar calcium amplifiers on the chemical composition of sweet paper. In Full text book, International Congress of High Value-Added Agcicultural Products, Iğdır University, Türkiye, pp. 178–185.
  • Stojanova, T.M. (2020). Fruits Nutrition. Academic Press, Skopje.
  • Stojanova, T.M. (2022). Nutrition of Horticultural Plants. Academic Press, Skopje.
  • Stojanova, T.M. (2018). Plant Nutrition. Academic Press, Skopje.
  • Su, Y., Zhou, X., Meng, H., Xia, T., Liu, H., Rolshausen, P., Roper, C., McLean, J. E., Zhang, Y., Keller, A. A., & Jassby, D. (2022). Cost–benefit analysis of nanofertilizers and nanopesticides emphasizes the need to improve the efficiency of nanoformulations for widescale adoption. Nature Food, 3(12), 1020–1030. https://doi.org/10.1038/s43016-022-00647-z
  • Taiz, L., & Zeiger, E. (2010). Plant Physiology. 5th Edition, Sinauer Associates. Publisher Sunderland, 781–785.
  • Wang,X., Xie, H., Wang, P., & Yin, H. (2023). Nanoparticles in plants: uptake, transport and physiological activity in leaf and root. Materials. 16, 3097.
  • Van Nguyen, D., Nguyen, H.M., Le, N.T., Nguyen, K.H., Nguyen, H.T., Le, H.M., & Van Ha, C. (2022). Copper nanoparticle application enhances plant growth and grain yield in maize under drought-stress conditions. Plant Growth Regul., 41(1), 364–375.
  • Verma, K.K., Song, X.P., Joshi, A., Rajput, V.D., Singh, M., Sharma, A., Singh, R.K., Li, D.M., Arora, J., Minkina, T., et al. (2022a). Nanofertilizer possibilities for healthy soil, water, and food in future: an overview. Front. Plant Sci. 13, 865048.
  • Verma, K.K., Song, X.P., Joshi, A., Tian, D.D., Rajput, V.D., Singh, M., Arora, J., Minkina, T., & Li, Y.R. (2022b). Recent trends in nano fertilizers for sustainable agriculture under climate change for global food security. Nanomaterials, 12, 173. https://doi.org/10.3390/nano12010173
  • Ude, R., Kujiper, I., Takiguchi, T., & Bußman, J. P. (2024). Nanofertilizers: A Green Window of Opportunity for Food Security in Sub-Saharan Africa. Science-Policy Brief for the Multistakeholder Forum on Science, Technology and Innovation for the SDGs.
  • Zulfiqar, F., Navarro, M., Ashraf, M., Akram, N. A., & Munné-Bosch, S. (2019). Nanofertilizer use for sustainable agriculture: advantages and limitations. Plant Science, 289, 110270. https://doi.org/https://doi.org/10.1016/j.plantsci.20 19.110270
  • Yadav, A., Yadav, K., & Abd-Elsalam, K.A. (2023). Nanofertilizers: Types, Delivery and Advantages in Agricultural Sustainability. Agrochemicals, 2, 296–336. https://doi.org/10.3390/agrochemicals2020019.