8th WORKSHOP: FOOD AND DRUG SAFETY AND QUALITY, ( pp. 9–16)
АУТОР / AUTHOR(S): I. Nastasijević , R. Mitrović , S. Janković
DOI: 10.46793/8FDSQ.ILA1IN
САЖЕТАК / ABSTRACT:
The meat production chain is complex, stretching from farm-to-fork (F2F), composed of Pre-Harvest (feed, farm biosecurity, animal health status, animal welfare, transportation, livestock market/abattoir lairage), Harvest (slaughter, dressing, chilling) and Post-Harvest modules (deboning, meat processing, packaging, distribution, retail, consumer). Different biological and chemical hazards may enter the meat chain at multiple points. Therefore, early and accurate detection of food borne hazards in F2F is of utmost importance for taking actions and applying corrective measure to ensure food safety along the meat chain. Biosensors (sensing systems) can play an important role in providing real-time detection of meat borne pathogens and food contaminants (chemical residues) within F2F continuum and become part of the solution for food safety 4.0, a risk-based food safety management system based on cyber-physical systems, contributing to meat supply chain security and sustainable agri-food chain.
КЉУЧНЕ РЕЧИ / KEYWORDS:
ПРОЈЕКАТ/ ACKNOWLEDGEMENT:
This work is supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia, with reference to the Contract on realization and financing scientific and research work of Scientific Research Organization in 2024. number: 451-03-66/2024-03/200050 from February 5th 2024.
ЛИТЕРАТУРА / REFERENCES:
[1] J. Sofos, Meat Science, 2008, 78, 3–13.
[2] I. Nastasijevic, S. Veskovic, M. Milijasevic, Meat Technology, 2020, 61(2), 97-119.
[3] EFSA, EFSA J, 2020, 18, 5967.
[4] EFSA/ECDC, The European Union One Health 2018 Zoonoses Report. EFSA J, 2019, 17(12), 5926.
[5] I. Nastasijevic, D. Milanov, B. Velebit, V. Djordjevic, C. Swift, A. Painset, B. Lakicevic, International Journal of Food Microbiology, 2017, 257, 157-164.
[6] FAO, Thinking about the future of food safety. A foresight report. Rome, 2022, https://openknowledge.fao.org/server/api/core/bitstreams/acfc4e93-8702-47da-acd2-7bf064ea9b0b/content (accessed on 18 September 2024).
[7] H. Li., X. Hao., Z. Wang, T. Le, S. Zou, X. Cao, in Micro and Nano Technologies, Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems, S. Thomas, M. Ahmadi, T. A. Nguyen, A. Afkhami, T. Madrakian (Eds), Elsevier, 2022, 355-374.
[8] G. Manessis, A. I. Gelasakis, I. Bossis, Biosensors, 2022, 12, 455.
[9] Y. Lu, J. Zhang, X. Lu, Q. Liu, Trends in Food Science & Technology, 2024, 148, 104482.
[10] I. Nastasijevic, I. Podunavac, S. Jankovic, R. Mitrovic, V. Radonic, Meat Technology–Special Issue, 2023, 64(2), 101-105.
[11] I. Nastasijevic, R. Mitrovic, S. Jankovic, IOP Conf. Series: Earth and Environmental Science 2021, 854, 012063.
[12] S. Neethirajan, S. K. Tuteja, S.-T. Huang, D. Kelton, Biosensors and Bioelectronics, 2017, 98, 398-407.
[13] S. M. Rutter, Behav. Res. Methods Instrum. Comput, 2000, 32(1), 86-92.
[14] B. Schazmann, D. Morris, C. Slater, S. Beirne, C. Fay, R. Reuveny, N. Moyna, D. Diamond, Anal. Methods, 2010, 2(4), 342-348.
[15] M. Yamaguchi, Y. Matsuda, S. Sasaki, M. Sasaki, Y. Kadoma, Y. Imai, D. Niwa, V. Shetty, Biosens Bioelectron, 2013, 41, 186-191.
[16] J. H. Leopold, R. T. van Hooijdonk, P. J. Sterk, A. Abu-Hanna, M. J. Schultz, L. D. Bos, BMS Anesthesiol, 2014, 14, 46.
[17] L. O. Burciaga-Robles, B. P. Holland, D. I. Step, C. R. Krehbiel, G. I. McMillen, C. J. Richards, L. E. Sims, J. D. Jeffers, K. Namjou, P. J. McCann, Am. J. Vet. Res, 2009, 70(10), 1291-1298.
[18] H. Knobloch, H. Kohler, N. Commander, P. Reinhold, C. Turner, M. Chambers, M. Pardo, G. Sberveglieri, AIP Conf Proc, 2009, 195-197.
[19] R. Fend, R. Geddes, S. Lesellier, H.-M. Vordermeier, L. A. L. Corner, E. Gormley, E. Costello, R. G. Hewinson, D. J. Marlin, A. C. Woodman, M. A. Chambers, J Clin Microbiol, 2005, 43(4), 1745-1751.
[20] V. Kumanan, S. R. Nugen, A. J. Baeumner, Y.-F. Chang, J Vet Sci, 2009, 10(1), 35-42.
[21] Z. Fang, W. Wu, X. Lu, L. Zeng, Biosens Bioelectron, 2014, 56, 192–197.
[22] W. Wu, S. Zhao, Y. Mao, Z. Fang, X. Lu, L. Zeng, Anal Chim Acta, 2015, 861, 62-8.
[23] M. Manzano, F. Cecchini, M. Fontanot, et al., Biosens Bioelectron, 2015, 66, 271–276.
[24] S. M. Yoo, S. Y. Lee, Trends Biotechnol 2016, 34, 7–25.
[25] N. Jaffrezic-Renault, C. Martelet, Y. Chevolot, J. P. Cloarec, Sensors, 2007, 7, 589–614.
[26] S. El Ichi, F. Leon, L. Vossier, et al., Biosens Bioelectron, 2014, 54, 378–384.
[27] G.-J. Chee, Y. Nomura, K. Ikebukuro, I. Karube, Anal Chim Acta, 1999, 394, 65-71.
[28] G. F. Sijpestijn, A. Wezel, S. Chriki, Livestock Science, 2022, 256, 104822.
[29] J.-F. Hocquette, S. Chriki, F. Dominique, M.-P. Ellies-Oury, Animal, 2024, 101145.
[30] Good Food Institute, Real Sense: Integrating biosensors for cultivated meat, 2020, https://gfi.org/researchgrants/realsense-integrating-biosensors-for-cultivated-meat/ (accessed on 18 September 2024).
[31] FAO/WHO, Food safety aspects of cell-based food, 2023, https://www.fao.org/3/cc4855en/cc4855en.pdf (accessed on 18 September 2024).