Energija, ekonomija, ekologija, 2, XXV (2023) (стр 1- 9)
АУТОР(И) / AUTHOR(S): Boban Pavlović
Е-АДРЕСА / E-MAIL: boban.pavlovic@rgf.bg.ac.rs
Download Full Pdf
DOI: 10.46793/EEE23-2.01P
САЖЕТАК / ABSTRACT:
Glavni cilj istraživanja bio je da se razvije metodološki pristup koji bi podržao proces energetskog planiranja tranzicije u grejanju domaćinstava, uzimajući u obzir specifičnosti ovog sektora. Kako bi se procenili mogući tokovi energetske tranzicije u grejanju domaćinstava i analizirali politički instrumenti za ubrzanje ovog procesa, razvijen je simulacioni model zasnovan na agentima (Agent Based Model – ABM). Simulacioni model je primenjen na slučaju energetske tranzicije u sektoru domaćinstva u Srbiji. Prethodno su kroz istraživanje prikupljeni podaci o grejanju domaćinstava potrebni za kreiranje ulaznih baza podataka za simulacioni model. Rezultati dobijeni primenom simulacionog modela prikazuju promenu strukture sistema grejanja u domaćinstvima do 2050. godine, u zavisnosti od odabranih političkih instrumenata za podršku procesu tranzicije. Integracijom istraživanja o grejanju domaćinstava, ABM simulacionog modela i standardnih alata za energetsko modeliranje, razvijen je sveobuhvatni koncept za podršku energetskom planiranju. Ovom integracijom su obezbeđeni uslovi za analizu efekata tranzicije u domaćinstvima na nivou ukupnog energetskog sistema države, regiona ili lokalne zajednice. Predloženi integrativni pristup dozvoljava da se projektuje buduća potrošnja energije za grejanje, koja proizilazi iz ponašanja domaćinstava, trendova demografskog razvoja, trendova energetske rehabilitacije objekata i dr. Rezultati dobijeni u slučaju sektora domaćinstva u Srbiji ukazuju na značajan potencijal za postizanje ušteda u potrošnji energije u grejanju domaćinstava ukoliko se postojeći zastareli grejni uređaji zamene održivijim tehnologijama, pre svega toplotnim pumpama, ali i ako se investira u energetsku sanaciju stambenih objekata. Predloženi pristup omogućava ranu procenu efekata neograničenog broja mera podrške i mehanizama za ubrzanje energetske tranzicije u sektoru domaćinstva.
КЉУЧНЕ РЕЧИ / KEYWORDS:
energetska tranzicija, energetsko planiranje, energetsko modeliranje, obnovljivi izvori energije, domaćinstva, ponašanje potrošača
ЛИТЕРАТУРА / REFERENCES:
- IEA, International Energy Agency, World energy outlook, 2014. http://www.iea.org/weo [pristupljeno 01.03.2023]
- IRENA, International Renewable Energy Agency, A Roadmap to 2050, 2018. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Apr/IRENA_Report_GET_2018.pdf [pristupljeno 01.03.2023]
- Tang, L., Wang, X., Wang, Xi., Shao, C., Liu, S., Tian, S. Long-term electricity consumption forecasting based on expert prediction and fuzzy Bayesian theory, Energy, Vol. 167, pp. 1144-1154, 2019. https://doi.org/10.1016/j.energy.2018.10.073
- Cajot, S., Peter, M., Bahu, J.M., Guignet, F., Koch, A., Maréchal, F. Obstacles in energy planning at the urban scale, Sustainable Cities and Society, Vol. 30, pp. 223-236, 2017. https://doi.org/10.1016/j.scs.2017.02.003
- Latinović, A., Đorđević, M., Surudžić, D., Šiljkut, V. Povećanje učešća obnovljivih izvora energije u sistemima za daljinsko grejanje, Energija, ekonomija, ekologija, Vol. 24, No. 2, pp. 61-67, 2022. https://doi.org/10.46793/EEE22-2.61L
- Pavlović, B., Ivezić, D., Živković, M. Izazovi energetske tranzicije u sektoru individualnog grejanja, Energija, ekonomija, ekologija, Vol. 24, No. 1, pp. 17-21, 2022. https://doi.org/10.46793/EEE22-1.17P
- Jelavić, V., Delija-Ružić, V. Multisektorski pristup u tranziciji prema niskougljičnom razvoju i ciljevima Zelenog akcionog plana EU – iskustva Republike Hrvatske, Energija, ekonomija, ekologija, Vol. 23, No. 3, pp. 26-35, 2021. https://doi.org/10.46793/EEE21-3.26J
- Dioha, M.O., Kumar, A. Exploring sustainable energy transitions in sub-Saharan Africa residential sector: The case of Nigeria, Renewable and Sustainable Energy Reviews, Vol. 117, pp. 109510, 2020. https://doi.org/10.1016/j.rser.2019.109510
- Tian, S., Lu, Y., Ge, X., Zheng, Y. An agent-based modeling approach combined with deep learning method in simulating household energy consumption, Journal of Building Engineering, Vol. 43, pp. 103210, 2021. https://doi.org/10.1016/j.jobe.2021.103210
- Kadian, R., Dahiya, R.P., Garg, H.P. Energy-related emissions and mitigation opportunities from the household sector in Delhi, Energy Policy, Vol. 35, No. 12, pp. 6195-6211, 2007. https://doi.org/10.1016/j.enpol.2007.07.014
- Wang, Z., Zhao, Z., Lin, B., Zhu, Y., Ouyang, Q. Residential heating energy consumption modeling through a bottom-up approach for China’s Hot Summer–Cold Winter climatic region, Energy and Buildings, Vol. 109, pp. 65-74, 2015. https://doi.org/10.1016/j.enbuild.2015.09.057
- Csutora, M., Zsoka, A.,Harangozo, G. The Grounded Survey – An integrative mixed method for scrutinizing household energy behavior, Ecological Economics, Vol. 182, pp. 106907, 2021. https://doi.org/10.1016/j.ecolecon.2020.106907
- Rue du Can, S., Khandekar, A., Abhyankar, N., Phadke, A., Zheng Khanna, N., Fridley, D., Zhou, N. Modeling India’s energy future using a bottom-up approach, Applied Energy, Vol. 238, pp. 1108-1125, 2019. https://doi.org/10.1016/j.apenergy.2019.01.065
- Živković, M., Pereverza, K., Pasichnyi, O., Madžarević, A., Ivezić, D., Kordas, O. Exploring scenarios for more sustainable heating: The case of Niš, Serbia, Energy, Vol. 115, pp. 1758-1770, 2016. https://doi.org/10.1016/j.energy.2016.06.034
- Mirakyan, A., De Guio, R. Integrated energy planning in cities and territories: A review of methods and tools, Renewable and Sustainable Energy Reviews, Vol. 22, pp. 289-297, 2013. https://doi.org/10.1016/j.rser.2013.01.033
- Sovacool, B.K., Martiskainen, M. Hot transformations: Governing rapid and deep household heating transitions in China, Denmark, Finland and the United Kingdom, Energy Policy, Vol. 139, pp. 111330, 2020. https://doi.org/10.1016/j.enpol.2020.111330
- Liu, W., Best, F., Crijns-Graus, W. Exploring the pathways towards a sustainable heating system – A case study of Utrecht in the Netherlands, Journal of Cleaner Production, Vol. 280, No. 2, pp. 125036, 2021. https://doi.org/10.1016/j.jclepro.2020.125036
- Rikalović, G., Vračarević, B., Molnar, D. Energetska politika kao faktor održivog razvoja, Energija, ekonomija, ekologija, Vol. 23, No. 3, pp. 66-72, 2021. https://doi.org/10.46793/EEE21-3.66R
- Pavlović, B. Modeliranje i simulacija energetske tranzicije u sektoru domaćinstva, doktorska disertacija, Univerzitet u Beogradu, Rudarsko-geološki fakultet, Beograd, 2023.
- Böhringer, C., Cantner, U., Costard, J., Kramkowski, L.V., Gatzen, C., Pietsch, S. Innovation for the German energy transition – Insights from an expert survey, Energy Policy, Vol. 144, pp. 111611, 2020. https://doi.org/10.1016/j.enpol.2020.111611
- Kachirayil, F., Weinand, J.M., Scheller, F., McKenna, R. Reviewing local and integrated energy system models: insights into flexibility and robustness challenges, Applied Energy, Vol. 324, pp. 119666, 2022. https://doi.org/10.1016/j.apenergy.2022.119666
- Wilensky, U. NetLogo, Center for connected learning and computer-based modeling, Northwestern University, Evanston, 1999. http://ccl.northwestern.edu/netlogo/ [pristupljeno 01.03.2023]
- Parović, M. Razvoj energetskih zajednica kao aktivna mera za podsticaj pravedne energetske tranzicije u Republici Srbiji, Energija, ekonomija, ekologija, Vol. 24, No. 2, pp. 33-39, 2022. https://doi.org/10.46793/EEE22-2.33P
- Rieder, W.G. Simulation and Modeling, in: Meyers R.A. (Ed.), Encyclopedia of Physical Science and Technology, Academic Press, pp. 815-835, 2003. https://doi.org/10.1016/B0-12-227410-5/00692-X
- Jackson, J.C., Rand, D., Lewis, K., Irwin, N.M., Kurt. G. Agent-based modeling: a guide for social psychologists, Social Psychological & Personality Science, Vol. 8, No. 4, pp. 381-395, 2017. https://doi.org/10.1177/1948550617691100
- Alvarez-Galvez, J. Network models of minority opinion spreading: using agent-based modeling to study possible scenarios of social contagion, Social Science Computer Review, Vol. 34, No. 5, pp. 567-581, 2015. https://doi.org/10.1177/0894439315605607
- Sopha, B.M., Klöckner, C.A., Hertwich, E.G. Adoption and diffusion of heating systems in Norway: Coupling agent-based modeling with empirical research, Environmental Innovation and Societal Transitions, Vol. 8, pp. 42-61, 2013. https://doi.org/10.1016/j.eist.2013.06.001
- Malik, C., Singhal, N. Consumer environmental attitude and willingness to purchase environmentally friendly products: an SEM approach, Vision: The Journal of Business Perspective, Vol. 21, No. 2, pp. 152-161, 2017. https://doi.org/10.1177/0972262917700991
- Eurostat, Energy consumption in households, 2022. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_consumption_in_households [pristupljeno 01.03.2023]
- Eurostat, Energy statistics – quantities, annual data, Energy balances, 2022. https://ec.europa.eu/eurostat/web/energy/data/energy-balances [pristupljeno 01.03.2023]
- Republički zavod za statistiku, Energetski bilans 2020, 2022. https://publikacije.stat.gov.rs/G2022/Pdf/G20225681.pdf [pristupljeno 01.03.2023]
- Republički zavod za statistiku, Uporedni pregled broja stanova, 2022. https://www.stat.gov.rs/sr-Latn/oblasti/popis/popis-2011/popisni-podaci-eksel-tabele [pristupljeno 01.03.2023]
- TOPS, Poslovno udruzenje Toplane Srbije, Izveštaj o radu sistema daljinskog grejanja u Republici Srbiji za 2020, 2021. https://www.toplanesrbije.org.rs/uploads/ck_editor/files/Godisnji%20izvestaj%20pdf%202020%20final.pdf [pristupljeno 01.03.2023]
- Republički zavod za statistiku, Regioni u Republici Srbiji, 2021. https://publikacije.stat.gov.rs/G2021/Pdf/G202126001.pdf [pristupljeno 01.03.2023]
- Jovanović, M., Bakić, V., Vučićević, B.S., Turanjanin, V.M. Analysis of different scenarios and sustainability measurement in the district heating sector in Serbia, Thermal Science, Vol. 23, No. 3B, pp. 2085-2096, 2019. https://doi.org/10.2298/TSCI181009298J
- Wong, J.B., Zhang, Q. Impact of carbon tax on electricity prices and behaviour, Finance Research Letters, Vol. 44, pp. 102098, 2022. https://doi.org/10.1016/j.frl.2021.102098
- Elia, A., Kamidelivand, M., Rogan, F., Gallachóir, B.Ó. Impacts of innovation on renewable energy technology cost reductions, Renewable and Sustainable Energy Reviews, Vol. 138, pp. 110488, 2021. https://doi.org/10.1016/j.rser.2020.110488
- Mercure, J.F, Salas, P., Vercoulen, P., Semieniuk, G., Lam, A., Pollitt, H., Holden, P. B., Vakilifard, N., Chewpreecha, U., Edwards, N.R., Vinuales, J. E. Reframing incentives for climate policy action, Nature energy, Vol. 6, pp. 1133-1143, 2021. https://doi.org/10.1038/s41560-021-00934-2