CHEMICAL COMPOSITION OF ROAD DUST AS AN INDICATOR OF THE ECOLOGICAL STATEOF URBAN LANDSCAPES (BY THE EXAMPLE OF THE CENTRAL ADMINISTRATIVE OKRUG OFMOSCOW)

THE 5TH CONGRESS OF SLAVIC GEOGRAPHERS AND ETHNOGRAPHERS (2024) (стр. 225-242)
 

АУТОР / AUTHOR(S): Natalia E. Kosheleva , Liliya A. Bezberday , Nikolay S. Kasimov 

Download Full Pdf   

DOI: 10.46793/CSGE5.225NK

САЖЕТАК / ABSTRACT:

An indicator of urban environmental pollution can be road dust, which is formed by the participation of many anthropogenic sources. For Moscow, the main source of heavy metals and metalloids (HMMs) is motor transport which emissions are toxic. Pollutants in fine fractions of road dust are easily blown into the air, then enter the human body and pose a health risk. This work is devoted to assessing the spatial distribution and environmental hazard of HMMs accumulation in road dust and its fine fractions PM1-10 and PM1 in the Central Administrative Okrug (CAO) of Moscow based on field data for 2023. The list of priority pollutants coming with technogenic emissions in the CAO includes Sb, Zn, Cu, and Cd, as well as Sn, Pb, Mo, and W. In fine fractions, the mean content of these HMMs is an order of magnitude higher; its variability is lower, while the differences in the contents of the elements in dust from roads with various traffic intensities become more contrasting. Differences between the roads are caused by intensity, average speed, and mode of the traffic, as well as by the composition of the vehicle fleet and the frequency of traffic jams. Extremely high and dangerous pollution in the PM1 fraction was found in about 85% of samples; the average for the okrug total pollution index for this fraction is 1.4 times higher than for the PM1-10 fraction.

КЉУЧНЕ РЕЧИ / KEYWORDS:

particle size fractions; enrichment; non-exhaust emissions; microparticles; pollution

ЛИТЕРАТУРА / REFERENCES:

  • Acosta, J.A., Gabarrón, M., Faz, A., Martínez-Martínez, S., Zornoza, R., & Arocena, J.M. (2015). Influence of population density on the concentration and speciation of metals in the soil and street dust from urban areas. Chemosphere, 134, 328–337. https://doi.org/10.1016/j.chemosphere.2015.04.038
  • Alekseeva, L.I., Varentsov, M.I., Gorbarenko, E.V., Gorlach, I.A., Eremina, I.D., Zhdanova, E.Yu., Kirsanov, A.A., Kislov, A.V., Konstantinov, P.I., Korneva, I.A., Lokoshchenko, M.A., Nezval, E.I., Revokatova, A.P., Rivin, G.S., Samsonov, T.E., Soshinskaya, I.V., Chubarova, N.E., & Shilovtseva, O.A. (2017). Climate of Moscow in the Context of Global Warming. Moscow University Publishing House. (in Russian)
  • Alves, C.A., Evtyugina, M., Vicente, A.M.P., Vicente, E.D., Nunes, T.V., Silva, P.M.A., Duarte, M.A.C., Pio, C.A., Amato, F., & Querol, X. (2018). Chemical profiling of PM10 from urban road dust. Science of the Total Environment, 634, 41–51. https://doi.org/10.1016/j.scitotenv.2018.03.338
  • Amato, F., Alastuey, A., Karanasiou, A., Lucarelli, F., Nava, S., Calzolai. G., Severi, M., Becagli, S., Gianelle, V.L., Colombi, C., Alves, C., Custódio, D., Nunes, T., Cerqueira, M., Pio, C., Eleftheriadis, K., Diapouli, E., Reche, C., Minguillón, M.C, … Querol, X. (2016). AIRUSE–LIFE+: A harmonized PM speciation and source apportionment in five southern European cities. Atmospheric Chemistry and Physics, 16, 3289–3309. https://doi.org/10.5194/acp-16-3289-2016
  • Amato, F., Pandolfi, M., Moreno, T., Furger, M., Pey, J., Alastuey, A., Bukowiecki, N., Prevot, A.S.H., Baltensperger, U., & Querol, X. (2011). Sources and variability of inhalable road dust particles in three European cities. Atmospheric Environment, 45, 6777–6787. https://doi.org/10.1016/j.atmosenv.2011.06.003
  • Bezberdaya, L.A., Enchilik, P.R., Kosheleva, N.E., Vasilchuk, Dzh. Yu., Semenkov, I.N., Vlasov, D.V., & Kasimov, N.S. (2023, December 5–7). Metodika vydeleniya granulometricheskikh fraktsiy pochv i pyli metodom tsentrifugirovaniya [Methodology for isolating granulometric fractions of soils and dust by centrifugation]. International Symposium “Engineering Ecology-2023”. Moscow, Russia. https://istina.fnkcrr.ru/publications/article/604546285/
  • Bityukova, V.R., & Mozgunov, N.A. (2019). Spatial features transformation of emission from motor vehicles in Moscow. Geography, Environment, Sustainability, 12(4), 57–73. https://doi.org/10.24057/2071-9388-2019-75
  • Department of Nature Management and Environmental Protection of the City of Moscow. (2024). Doklad o sostoyanii okruzhayushchey sredy v Moskve v 2023 godu [Report on the state of the environment in Moscow in 2023]. https://www.mos.ru/upload/content/files/6232cd0cea91794c6250
    a02e8c371737/Gosdoklad2023_0507.pdf
  • Department of the Federal State Statistics Service for Moscow and the Moscow Region. (2024). Otsenka chislennosti naseleniya Moskvy na 1 yanvarya 2024 goda i srednyaya za 2023 god [The estimate of the population of Moscow as of January 1, 2024 and the average for 2023]. https://77.rosstat.gov.ru/folder/64634
  • Fussell, J.C., Franklin, M., Green, D.C., Gustafsson, M., Harrison, R.M., Hicks, W., Kelly, F.J., Kishta, F., Miller, M.R., Mudway, I.S., Oroumiyeh, F., Selley, L., Wang, M., & Zhu, Y. (2022). A Review of Road Traffic-Derived Non-Exhaust Particles: Emissions, Physicochemical Characteristics, Health Risks, and Mitigation Measures. Environmental. Science and Technology, 56, 6813–6835. https://doi.org/10.1021/acs.est.2c01072
  • Gerasimova, M. I., Stroganova, M. N., Mozharova, N. V., & Prokof’eva, T. V. (2003). Antropogennye pochvy: genezis, geografiya, rekul’tivatsiya. [Anthropogenic soils: genesis, geography, and reclamation]. Smolensk, Oykumena (in Russian).
  • Golokhvast, K.S., Vitkina, T.I., Gvozdenko, T.A., Kolosov, V.P., Yankova, V.I., Kondratieva, E.V., Gorkavaya, A.V., Nazarenko, A.V., Chaika, V.V., Romanova, T.Yu., Karabtsov, A.A., Perelman, Yu.M., & Kiku, P.F. (2015). Impact of atmospheric microparticles on the development of oxidative stress in healthy city industrial seaport residents. Oxidative Medicine and Cellular Longevity, 2015(1), Article 412173. https://doi.org/10.1155/2015/412173
  • Grigoratos, T., & Martini, G. (2015). Brake wear particle emissions: a review. Environmental Science and Pollution Research, 22, 2491–2504.
  • Harrison, R.M., Allan, J., Carruthers, D., Heal, M.R., Lewis, A.C., Marner, B., Murrells, T., & Williams, A. (2021). Non-exhaust vehicle emissions of particulate matter and VOC from road traffic: A review. Atmospheric Environment, 262, Article 118592. https://doi.org/10.1016/j.atmosenv.2021.118592
  • Haynes, H.M., Taylor, K.G., Rothwell, J., & Byrne, P. (2020). Characterisation of road-dust sediment in urban systems: a review of a global challenge. Journal of Soils and Sediments, 20, 4194–4217. https://doi.org/10.1007/s11368-020-02804-y
  • International Organization for Standardization (2016). ISO 17025:2017 – General requirements for the competence of testing and calibration laboratories. Edition 3.
  • International Organization for Standardization (2016). ISO 17034:2016 – General requirements for the competence of reference material producers. Edition 1.
  • Ishkov, A.G., & Ilyin, I.N. (2000). Ecological Atlas of Moscow. ABF. (in Russian)
  • Ivaneev, A., Brzhezinskiy, A., Karandashev, V., Fedyunina, N., Ermolin, M., & Fedotov, P. (2024). Nanoparticles of dust as an emerging contaminant in urban environments. Environmental Geochemistry and Health, 46, Article 367. https://doi.org/10.1007/s10653-024-02139-4
  • Ivaneev, A.I., Brzhezinskiy, A.S., Karandashev, V.K., Ermolin, M.S., & Fedotov, P.S. (2023). Assessment of sources, environmental, ecological, and health risks of potentially toxic elements in urban dust of Moscow megacity, Russia. Chemosphere, 321, Article 138142. https://doi.org/10.1016/j.chemosphere.2023.138142
  • Jayarathne, A.,  Egodawatta, P.,  Ayoko, G.A., & Goonetilleke, A. (2017). Geochemical phase and particle size relationships of metals in urban road dust. Environmental Pollution, 230, 218-226. https://doi.org/10.1016/j.envpol.2017.06.059
  • Kasimov, N.S., Kosheleva, N.E., Popovicheva, O.V., Vlasov, D.V., Shinkareva, G.L., Erina, O.N., Chalov, S.R., Chichaeva, M.A., Kovach, R.G., Zavgorodnyaya, Yu.A., & Lychagin, M.Yu. (2023). Moscow megacity pollution: Monitoring of chemical composition of microparticles in the atmosphere–snow–road dust–surface water–soil system. Russian Meteorology and Hydrology, 48(5), 393–403. https://doi.org/10.3103/S1068373923050011
  • Kasimov, N.S., Kosheleva, N.E., Vlasov, D.V., Nabelkina, K.S., & Ryzhov, A.V. (2019). Physicochemical properties of road dust in Moscow. Geography, Environment, Sustainability, 12(4), 96–113. https://doi.org/10.24057/2071-9388-2019-55
  • Kasimov, N.S., Vlasov, D.V., & Kosheleva, N.E. (2020). Enrichment of road dust particles and adjacent environments with metals and metalloids in eastern Moscow. Urban Climate, 32, Article 100638. https://doi.org/10.1016/j.uclim.2020.100638
  • Kasimov, N.S., Vlasov, D.V., Kosheleva, N.E., & Nikiforova, E.M. (2016). Geochemistry of Landscapes of Eastern Moscow. APR Moscow. (in Russian)
  • Khademi, H., Gabarrón, M., Abbaspour, A., Martínez-Martínez, S., Faz, A., & Acosta, J.A. (2020). Distribution of metal(loid)s in particle size fraction in urban soil and street dust: influence of population density. Environmental Geochemistry and Health, 42, 4341–4354. https://doi.org/10.1007/s10653-020-00515-4
  • Kong, S., Lu, B., Ji, Y., Zhao, X., Bai, Z., Xu, Y., Liu, Y., & Jiang, H. (2012). Risk assessment of heavy metals in road and soil dusts within PM2.5, PM10 and PM100 fractions in Dongying City, Shandong Province, China. Journal of Environmental Monitoring, 14, 791–803. https://doi.org/10.1039/c1em10555h
  • Kosheleva, N.E., Vlasov, D.V., Korlyakov, I.D., & Kasimov, N.S. (2018). Contamination of urban soils with heavy metals in Moscow as affected by building development. Science of the Total Environment, 636, 854–863. https://doi.org/10.1016/j.scitotenv.2018.04.308
  • Kulbachevskii A.O. (Ed.). (2023). Report on the State of the Environment in Moscow in 2022. Department of Nature Management and Environmental Protection of Moscow Government. (in Russian)
  • Ladonin, D.V., & Mikhaylova, A.P. (2020). Heavy metals and arsenic in soils and street dust of the Southeastern administrative district of Moscow: Long-term data. Eurasian Soil Science, 53(11), 1635–1644. https://doi.org/10.1134/S1064229320110095
  • Ladonin, D.V., & Plyaskina, O.V. (2009). Isotopic composition of lead in soils and street dust in the Southeastern administrative district of Moscow. Eurasian Soil Science, 42(1), 93–104. https://doi.org/10.1134/S1064229309010128
  • Lanzerstorfer, C. (2018). Heavy metals in the finest size fractions of road-deposited sediments. Environmental Pollution, 239, 522–531. https://doi.org/10.1016/j.envpol.2018.04.063
  • Long, Z., Zhu, H., Bing, H., Tian, X., Wang, Z., Wang, X., & Wu, Y. (2021). Contamination, sources and health risk of heavy metals in soil and dust from different functional areas in an industrial city of Panzhihua City, Southwest China. Journal of Hazardous Materials, 420, Article 126638. https://doi.org/10.1016/j.jhazmat.2021.126638.
  • NSAM № 499 AES/MS. (2015). Determination of the elemental composition of rocks, soils and bottom sediments by atomic emission and mass spectral methods with inductively coupled plasma. VIMS, Moscow, Russia (in Russian)
  • Official website of the Mayor of Moscow. (2020, February 25). Redevelopment of the industrial zone in the Central Administrative District allowed almost 600 thousand square meters of real estate to be put into operation. https://www.mos.ru/news/item/70057073/
  • Our World in Data (2023). Share of the population living in urban areas [Interactive Maps]. Retrieved from https://ourworldindata.org/grapher/urban-population-share-2050
  • Popov, A.A., Saulskaya, T.D., & Shatilo, D.P. (2016). The Industrial Zones as а Factor of Ecological Situation and Housing Prices Variation in Moscow. Ecology and Industry of Russia, 20(2), 32–38. https://doi.org/10.18412/1816-0395-2016-2-32-38
  • Prokofieva, T.V., Shishkov, V.A., Kiryushin, A.V., & Kalushin, I.Yu. (2015). Properties of solid (dust and aerosol) fallout in roadside areas in Moscow. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya, 3, 107–120. https://doi.org/10.15356/0373-2444-2015-3-107-120 (in Russian)
  • Ramirez, O., Sánchez de la Campa, A.M., Amato, F., Moreno, T., Silva, L.F., & de la Rosa, J.D. (2019). Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Science of the Total Environment, 652, 434–446. https://doi.org/10.1016/j.scitotenv.2018.10.214.
  • Revich, B.A. (2018). Fine suspended particles in the atmospheric air and their impact on the health of residents of megacities. Problems of Ecological Monitoring and Ecosystem Modeling, 29(3), 53–78 (in Russian).
  • Rienda, I.C., & Alves, C.A. (2021). Road dust resuspension: A review. Atmospheric Research, 261, Article 105740. https://doi.org/10.1016/j.atmosres.2021.105740
  • Rudnick, R.L., & Gao, S. (2014). Composition of the continental crust. In H.D. Holland, & K.K. Turekian (Eds.), Treatise on Geochemistry (pp. 1-51). Elsevier Science.
  • SanPiN 2.1.3684-21. (2021). Hygienic Standards and Requirements for Ensuring the Safety and (or) Harmlessness of Environmental Factors for Humans. p.990 (In Russian).
  • Saulskaya, T.D. (2018). Renovation of industrial zones in Moscow and its environmental assessment. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya, 1, 63-74. https://doi.org/10.7868/S258755661801006X
  • Seleznev, A., Ilgasheva, E., Yarmoshenko, I., & Malinovsky, G. (2021). Coarse Technogenic Material in Urban Surface Deposited Sediments (USDS). Atmosphere12(6), Article 754. https://doi.org/10.3390/atmos12060754
  • Sutherland, R.A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental geology, 39(6), 611–627. https://doi.org/10.1007/s002540050473
  • Tager, I.B. (2004). Health effects of aerosols: Mechanisms and epidemiology. In L.S. Ruzer, & N.H. Harley (Eds.), Aerosols Handbook: Measurement, Dosimetry, and Health Effects (pp. 565-637). CRC Press.
  • Tanner, P.A., Ma, H.-L., & Peter, K.N.Yu. (2008). Fingerprinting Metals in Urban Street Dust of Beijing, Shanghai, and Hong Kong. Environmental Science and Technology, 42, 7111–7117.
  • Varentsov, M., Wouters, H., Platonov, V., & Konstantinov, P. (2018). Megacity-Induced Mesoclimatic Effects in the Lower Atmosphere: A Modeling Study for Multiple Summers over Moscow, Russia. Atmosphere, 9(2), Article 50. https://doi.org/10.3390/atmos9020050
  • Vlasov, D., Kosheleva, N., & Kasimov, N. (2021). Spatial distribution and sources of potentially toxic elements in road dust and its PM10 fraction of Moscow megacity. Science of the Total Environment, 761, Article 143267. https://doi.org/10.1016/j.scitotenv.2020.143267
  • Vlasov, D.V., Kukushkina, O.V., Kosheleva, N.E., & Kasimov, N.S. (2022). Levels and factors of the accumulation of metals and metalloids in roadside soils, road dust, and their PM10 fraction in the western okrug of Moscow. Eurasian Soil Science, 55(5), 556–572. https://doi.org/10.1134/S1064229322050118
  • Vlasov, D.V., Vasilchuk, J.Yu., Kosheleva, N.E., & Kasimov, N.S. (2023). Contamination levels and source apportionment of potentially toxic elements in size-fractionated road dust of Moscow. Environmental Science and Pollution Research, 30, 38099–38120. https://doi.org/10.1007/s11356-022-24934-1
  • Wang, H.-Z., Cai, L.-M., Wang, Q.-S., Hu G.-C., & Chen L.-G. (2021). A comprehensive exploration of risk assessment and source quantification of potentially toxic elements in road dust: A case study from a large Cu smelter in central China. Catena, 196, Article 104930. https://doi.org/10.1016/j.catena.2020.104930