SAVREMENA REŠENJA ZA AKUMULACIJU ENERGIJE U ELEKTROENERGETSKOM SISTEMU

Флексибилност електроенергетског система / Зборник CIGRE (2023).  (стр 1839-1850)

АУТОР(И) / AUTHOR(S): Aleksandar Gajić, Vladimir Stevanović

Е-АДРЕСА / E-MAIL: agajicprof@gmail.com

DownloadFull Pdf  

DOI:  10.46793/CIGRE36.1839G

САЖЕТАК / ABSTRACT:

Akumulacija energije u elektroenergetskom sistemu je neophodna kako bi se uskladila snaga proizvodnje sa snagom potrošnje i održala stabilnost isporuke električne energije. Neophodnost akumulacije energije je naročito izražena u elektroenergetskim sistemima sa većim udelom solarnih i vetroelektrana, čija je snaga proizvodnje uslovljena promenljivim vremenskim uslovima. Akumulacija energije omogućava brzu primarnu i sekundarnu regulaciju generisane snage, dok u slučaju većih akumulacija učestvuje i u tercijalnoj regulaciji. U potpunosti razvijena tehnologija sa velikim eksploatacionim iskustvom za akumulaciju energije u elektroenergetskom sistemu, kako u svetu tako i u Srbiji, jeste primena reverzibilnih hidroelektrana. U radu se analiziraju dosadašnja iskustva u primeni reverzibilnih hidroelektrana, kao i neka novija tehnička rešenja u cilju maksimalnog iskorišćenja prirodnih potencijala za akumulaciju hidroenergije. Pored toga, s obzirom na to da je Srbija jedna od zemalja u svetu sa velikim udelom proizvodnje električne energije iz uglja, razmotrena su i neka od savremenih rešenja za akumulaciju energije u okviru termoelektrana.

КЉУЧНЕ РЕЧИ / KEYWORDS:

elektroenergetski sistem, regulacija snage, akumulacija energije, reverzibilne hidroelektrane, solarne elektrane, vetroelektrane, termoelektrane

ЛИТЕРАТУРА / REFERENCES:

  • A. Gajic, S. Pejovic, B. Karney, Reverzibilne hidroelektrane smanjuju troškove proizvodnje i obezbeđuju čistu energiju vetra i sunca, TERMOTEHNIKA, vol. 43, no. 1-4, 2017, pp. 39-47
  • H.L. Ferreira, R. Garde, G. Fulli, W. Kling and J.P. Lopes, Characterisation of electrical energy storage technologies. Energy, vol. 53, 2013, pp. 288-298. doi: 10.1016/j.energy.2013.02.037

  • Pravila o radu prenosnog sistema, Elektromreža Srbije, Beograd, 2020.
    https://ems.rs/pravila-o-radu-prenosnog-sistema-2/

  • Establishing a network code on requirements for grid connection of generators, COMMISSION REGULATION (EU) 2016/631 of 14 April 2016. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:JOL_2016_112_R_0001#d1e1086-1-1 

  • UCTE. Continental Europe operation handbook – Load-frequency control and performance,
    https://docstore.entsoe.eu/fileadmin/user_upload/_library/publications/entsoe/Operation_Handbook/Policy_1_final.pdf

  • Energy Charts, Fraunhofel Institute, Germany, https://energy-charts.info/?l=en&c=DE

  • Wind Energy Statistics, Renewable UK,
    https://www.renewableuk.com/page/UKWEDExplained/Statistics-Explained.htm

  • Wind energy in Europe, 2021 Statistics and the outlook for 2022-2026, Wind Europe, 2022,
    https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiU7uOtvYH-
    AhUZS_EDHbSuDGs4ChAWegQIBhAB&url=https%3A%2F%2Fproceedings.windeurope.org%2Fbiplatform%2Frails%2Factive_storage%2Fblobs%2FeyJfcmFpbHMiOnsibWVzc2FnZSI6IkJBaHBBbFFEIiwiZXhwIjpudWxsLCJwdXIiOiJibG9iX2lkIn19–f507a22c9854863e01fd427239f10167d031cc66%2FWindeurope-Wind-energy-in-Europe-2021-statistics.pdf&usg=AOvVaw0hucLA_5cfr3_tgfPrARZb 

  • Energetski bilans Republike Srbije za 2022. godinu, Ministartsvo rudarstva i energetike Republike Srbije, Beograd, https://www.mre.gov.rs/dokumenta/strateska-dokumenta/energetski-bilans-republike-srbije-za-2022-godinu  

  • National Renewable Energy Action Plan (NREAP) Implementation Report for 2020, Ministartsvo rudarstva i energetike Republike Srbije, Beograd, https://www.mre.gov.rs/dokumenta/sektor-za-zelenu-energiju/izvestaji/izvestaj-o-sprovodjenju-nacionalnog-akcionog-plana-za-koriscenje-obnovljivih-izvora-energije-republike-srbije-za-2020-godinu 

  • Williams E., Dinorwig, the Electric Mountain, Public Relations, The National Grid Company plc, National Grid Hiuse, Summer Street, London SEI 9JU, Registered in England and Wales No2366877

  • O. Garbrecht, M. Bieber, R. Kneer, Increasing fossil power plant flexibility by integrating molten-salt thermal storage. Energy 118 (2017) pp. 876-883

  • M. Trojan, D. Taler, P. Dzierwa, J. Taler, K. Kaczmarski, J. Wrona., The use of pressure hot water storage tanks to improve the energy flexibility of the steam power unit, Energy 173 (2019) pp. 926-936

  • M. Richter, G. Oeljeklaus, K. Görner, Improving the load flexibility of coal-fired power plants by the integration of a thermal energy storage, Applied Energy 236 (2019) pp. 607-621

  • G. Beckman, P. V. Gilli, Thermal energy storage: Basics-design-applications to power generation and heat supply, Springer-Verlag, Wien NewYork (1984)

  • P.V. Gilli, K. Fritz, Nuclear power plants with integrated steam accumulators for load peaking, IAEA Symposium on Economic Integration of Nuclear Power Stations in Electric Power Systems, Vienna, WB-KE-2015 (1970)

  • R. E. Lain III, Modeling and integration of steam accumulators in nuclear steam supply systems, MS Thesis, University of Texas at Austin (2016)

  • V. Stevanovic, M.M. Petrovic, S. Milivojevic, M. Ilic, Upgrade of the thermal power plant flexibility by the steam accumulator, Energy Conversion and Management, Vol. 223, (2020), article 113271.
  • A Gajic, V Stevanovic, S Pejovic, B Karney, Hydro storage reduces electricity costs and keep wind and solar unpolluted, 29th IAHR Symposium on Hydraulic Machinery and Systems, Kyoto, Japan (2018), article 461