Флексибилност електроенергетског система / Зборник CIGRE (2023). (стр 1261-1276)
АУТОР(И) / AUTHOR(S): Suad Halilčević
Е-АДРЕСА / E-MAIL: suad.halilcevic@untz.ba
Download Full Pdf
DOI: 10.46793/CIGRE36.1261H
САЖЕТАК / ABSTRACT:
Sa sve većim učešćem obnovljivih izvora energije u proizvodnji električne energije odgovor na pitanje potrebnog kapaciteta operativne rezerve u elektroenergetskim sistemima postaje sve komplikovaniji. Sama činjenica varijabilnosti pogonske energije (Sunce, vjetar, voda) u fotonaponskim elektranama, vjetroelektranama i malim hidroelektranama čini potrebni kapacitet operativne rezerve promjenljivim. Kako je sam elektroenergetski sistem stohastičan, uključivanje obnovljivih izvora energije u rad elektroenergetskih sistema još više naglašava njegovu stohastičku karakteristiku. Iz tog razloga, potreba za operativnom rezervom u elektro mikromreža, najbolje se rješava pomoću alata vjerovatnoće, odnosno statistike i procjene. Pitanje operativne rezerve u elektroenergetskom sistemu istraživano je Bayesian-ovom statistikom, koja povezuje istovremenu pojavu slučajne varijable (dostupni kapacitet obnovljivih izvora energije u mikromrežama) sa statističkom varijablom (opterećenje u mikromrežama). Rezultat ovog istraživanja je vjerovatnoća deficita ili viška raspoložive energije u mikromrežama, a posljedica te vjerovatnoće je vjerovatnoća potrebe i stepena angažovanja operativne rezerve u elektroenergetskom sistemu pomoću sistemskih termoelektrana i/ili hidroelektrana.
КЉУЧНЕ РЕЧИ / KEYWORDS:
Elektroenergetski sistem, Mikromreža, Operativna rezerva, Bayesian vjerovatnoća
ЛИТЕРАТУРА / REFERENCES:
- IEEE Task Force on Large Interconnected Power Systems Response to Generation Governing, Interconnected Power System Response to Generation Governing: Present Practice and Outstanding Concerns, May 2007, IEEE Special Publication 07TP180.
- IEEE 1547-2018, IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces.
- IEEE Standard for Interconnection and Interoperability of Inverter-Based Resources (IBRs) Interconnecting with Associated Transmission Electric Power Systems,“ in IEEE Std 2800-2022, vol., no., pp.1-180, 22 April 2022.
- CIGRE Working Group C5.06, “Ancillary services: an overview of international practices,” Technical brochure number 435, October 2010.
- S. Newell, R. Carroll et al., „Estimation of the Market Equilibrium and Economically Optimal Reserve Margins for the ERCOT Region, 2018 Update,” The Brattle Group. TR-48551, No 58, Dec. 2018.
- MISO, Resource Adequacy Business Practice Manual, BPM-011-r27, Effective Date: OCT-31-2022.
- NYSRC Reliability Rules For Planning and Operating the New York State Power System, New York State Reliability Council, L.L.C., 2011.
- E. Hale and E. Zhou, Absorbing the Sun: Operational Practices and Balancing Reserves in Florida’s Municipal Utilities, National Renewable Energy Laboratory, July, 2021.
- PJM Reserve Requirement Study, PJM Interconnection, October 10, 2018. [Online]. Available: https://www.pjm.com › media › raas › 20180531.
- Official Journal of the European Union. Commission Regulation (EU) 2017/2195 of 23 November 2017, Establishing a Guideline on Electricity Balancing. [Online]. Available: https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=CELEX:32017R2195.
- G. Michal, „Electricity Balancing-European Union Electricity Market Glossary,” [Online]. Available: https://www.emissions-euets.com/internal-electricity-market-glossary/593-balancing.
- G. Michal, „Replacement Reserve (RR) – European Union Electricity Market Glossary“. [Online]. Available: https://www.emissions-euets.com/internal – electricity-market-glossary/424-frequency containment-reserves frequency-restoration-reserves-frr-replacement-reserves-rr.
- The guideline on electricity balancing (EB GL), Commission Regulation (EU) 2017/2195 of 23 November 2017.
- M. Maurer, Imbalance Netting Implementation Project, ENTSO-E – ECS, Workshop on Electricity Balancing, Vienna, April, 2017.
- R. Mukerjee, C.F. J. Wu, A Modern Theory of Factorial Design (Springer Series in Statistics), Springer, 2006.
- B. Jones, D.C. Montgomery, Design of Experiments: A Modern Approach, 1st Edition, Wiley, 2019.
- Zakon o korištenju obnovljivih izvora energije i efikasne kogeneracije (Službene novine Federacije BiH, broj 70/13) i Zakon o obnovljivim izvorima energije (Službeni glasnik Republike Srpske, broj 16/22.
- The Renewable Energy Directive, Directive (EU) 2018/2001, (RED II).
- N. Hatziargyriou, H. Asano, R. Iravani, Chris Marnay, “Microgrids: An Overview of Ongoing Research, Development, and Demonstration Projects,” Ernest Orlando Lawrence Berkeley national Laboratory, Environmental Energy Technologies Division, July 2007.
- B. Kroposki, R. Lasseter, T. Ise, S. Morozumi, S. Papathanassiou, N. Hatziargyriou, “Making Microgrids Work,” IEEE Power & Energy Magazine, pp. 41-53, 2008.
- CIGRÉ C6.22 Working Group.
- E. Unamuno, J.A. Barrena, “Hybrid ac/dc microgrids—Part I: Review and classification of topologies,” Renewable and Sustainable Energy Reviews, vol. 52, pp. 1251-1259, 2015.
- ENTSO-e, Electricity Balancing in Europe, European Electricity Balancing Guideline, 2018.
- EPRI, Operating Reserve Determination, product ID 3002006112, 2015.
- E. Ela et al., „Evolution of operating reserve determination in wind power integration studies,“ IEEE PES General Meeting, Minneapolis, MN, USA, pp. 1-8, 2010.
- R. Liu, X. Zhang, Y. Chang, Y. Wang, Y. Ba, S. Shen, Y. Song, W. Li, “Determination of Reserve Capacity under the Regional Interaction Operation with Wind Power Integration,”
- Proceedings of the International Conference on Logistics, Engineering, Management and Computer Science, Proceedings, Series: Advances in Intelligent Systems Research, Atlantis Press, 2015.
- K. Antoniadou-Plytaria, D. Steen, L. A. Tuan, O. Carlson, B. Mohandes, and M. A. Fotouhi Ghazvini, “Scenario-Based Stochastic Optimization for Energy and Flexibility Dispatch of a Microgrid,” IEEE Transactions on Smart Grid, vol. 13, no. 5, pp. 3328-3342, 2022.
- I. Šarūnienė, J. Augutis, V. Radziukynas, R. Krikštolaitis, “Application of Bayesian method for electrical power system transient stability assessment,” International Journal of Electrical Power & Energy Systems, vol. 42, no. 1, pp. 465-472, Nov. 2012.
- S. R. Khuntia, J. L. Rueda, M. A. M. M. van der Meijden, Mutual information based Bayesian analysis of power system reliability, Presented at IEEE Eindhoven PowerTech – 2015.
- R. Nagi, X. Huan, and Y. C. Chen, “Bayesian Inference of Parameters in Power System Dynamic Models Using Trajectory Sensitivities,” IEEE Trans. On Power Systems, vol. 37, No. 2, pp. 1253-1264, 2022.
- A. Bracale, G. Carpinelli, P. de Falco, A Bayesian-based approach for the short-term forecasting of electrical loads in smart grids. IEEE International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 121-136, 2016.
- M. Yang, Y. Lin, X. Han, Probabilistic Wind Generation Forecast Based on Sparse Bayesian Classification and Dempster-Shafer Theory, IEEE Industry Applications Society Annual Meeting, pp. 1-6, 2015.
- A. Moradkhani, M. R. Haghifam, M. Mohammadzadeh, “Bayesian estimation of overhead lines failure rate in electrical distribution systems,” International Journal of Electrical Power & Energy Systems, vol. 56, pp. 220-227, 2014.
- N. Petra, C. G. Petra, Z. Zhang, E. M. Constantinescu, and M. Anitescu, “A Bayesian Approach for Parameter Estimation With Uncertainty for Dynamic Power Systems,” IEEE Transactions on Power Systems, 2016.
- C. Zuluaga, and L. Alvarez, “Bayesian Probabilistic Power Flow Analysis Using Jacobian Approximate Bayesian Computation”, IEEE Transactions on Power Systems, vol. 33, no. 5, pp. 5217-5225, 2018.
- R. McElreath, Statistical Rethinking: A Bayesian Course with Examples in R and STAN Chapman & Hall/CRC Texts in Statistical Science, CRC Press, 2020.
- Integracija vjetro i solarnih izvora električne energije u EES BiH sa stanovišta regulacije, NOS BiH, juli, 2018.