Uptake of some heavy metal(oid)s by sunflower

Chemia Naissensis Volume 5, No.2 (2023) (стр. 73-84) 

АУТОР(И) / AUTHOR(S): Stefan Petrović, Jelena Mrmošanin, Biljana Arsić, Aleksandra Pavlović and Snežana Tošić

Е-АДРЕСА / E-MAIL: stefan.petrovic@pmf.edu.rs

Download Full Pdf   

DOI: 10.46793/ChemN5.2.73P

САЖЕТАК / ABSTRACT:

Plant parts of sunflower (Helianthus annuus L.): root, stem, leaf, and seed, as well as the soil on which this plant culture was grown were analyzed for the content of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn using Optical emission spectrometry with inductively coupled plasma (ICP-OES). The samples were prepared by wet digestion. To assess the degree of bioaccumulation in plant parts and the translocation of the examined elements from the roots to the above-ground plant parts, the Biological Concentration Factor (BCF), Mobility Ratio (MR), and Translocation Factor (TF) were calculated. BCF and MR values are less than 1 for all elements while TF (leaf/root) values for As, Cd, Cu, Fe, and Mn and TF (stem/root) values for Cu are higher than 1.

КЉУЧНЕ РЕЧИ / KEYWORDS:

sunflower, soil, heavy metal(oid)s, ICP-OES, bioaccumulation, translocation

ЛИТЕРАТУРА / REFERENCES:

  • Addis, W., & Abebaw, A. (2017). Determination of heavy metal concentration in soils used for cultivation of Allium sativum L. (garlic) in East Gojjam Zone, Amhara Region, Ethiopia. Cogent Chemistry, 3(1), 1–12. doi: 10.1080/23312009.2017.1419422
  • Alagić, S. Č., Tošić, S. B., Dimitrijević, M. D., Antonijević, M. M., & Nujkić, M. M. (2015). Assessment of the quality of polluted areas based on the content of heavy metals in different organs of the grapevine (Vitis vinifera) cv Tamjanika. Environmental Science and Pollution Research, 22(9), 7155–7175. doi: 10.1007/s11356-014-3933-1
  • Alloway, B. J. (2013). Heavy metals in soils (3rd ed.). London: Springer.
  • Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., Prasad, M. N. V., Wenzel, W. W., & Rinklebe, J. (2017). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Science Reviews, 171, 621–645. doi: 10.1016/j.earscirev.2017.06.005
  • Bargagli, R., Borghini, F., & Celesti, C. (2000). Elemental composition of the lichen Umbilicaria decussata. Italian Journal of Zoology, 67(1), 157–162. doi: 10.1080/11250000009356371
  • Chen, Z.-F., Zhao, Y., Zhu, Y., Yang, X., Qiao, J., Tian, Q., & Zhang, Q. (2010). Health risks of heavy metals in sewage-irrigated soils and edible seeds in Langfang of Hebei province, China. Journal of the Science of Food and Agriculture, 90(2), 314–320. doi: 10.1002/jsfa.3817
  • Dimitrijević, M. D., Nujkić, M. M., Alagić, S. Č., Milić, S. M., & Tošić, S. B. (2016). Heavy metal contamination of topsoil and parts of peach-tree growing at different distances from a smelting complex. International Journal of Environmental Science and Technology, 13(2), 615–630. doi: 10.1007/s13762-015-0905-z
  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). CRC Press.
  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: London, New York, Washington.
  • Liang, J., Chen, C., Song, X., Han, Y., & Liang, Z. (2011). Assessment of heavy metal pollution in soil and plants from Dunhua sewage irrigation area. International Journal of Electrochemical Science, 6(11), 5314–5324.
  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8(3), 199–216. doi: 10.1007/s10311- 010-0297-8
  • Nehnevajova, E., Herzig, R., Federer, G., Erismann, K.-H., & Schwitzguébel, J.-P. (2005). Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis. International Journal of Phytoremediation, 7(4), 337–349. doi: 10.1080/16226510500327210
  • „Official Gazette of the RS“, No. 23/94 (1994). Rulebook on allowable quantities of dangerous and hazardous matters in soil and irrigation water and methods for their testing.
  • Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K.-H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, 365–385. doi: 10.1016/j.envint.2019.01.067
  • Retamal-Salgado, J., Hirzel, J., Walter, I., & Matus, I. (2017). Bioabsorption and bioaccumulation of cadmium in the straw and grain of maize (Zea mays L.) in growing soils contaminated with cadmium in different environment. International Journal of Environmental Research and Public Health, 14(11), 1–15. doi: 10.3390/ijerph14111399
  • Rezaeian, M., Moghadam, M. T., Kiaei, M. M., & Zadeh, H. M. (2020). The effect of heavy metals on the nutritional value of alfalfa: comparison of nutrients and heavy metals of alfalfa (Medicago sativa) in industrial and non-industrial areas. Toxicological Research, 36(2), 183– 193. doi: 10.1007/s43188-019-00012-6
  • Sheoran, V., Sheoran, A. S., & Poonia, P. (2016). Factors affecting phytoextraction: A review.
  • Pedosphere, 26(2), 148–166. https://doi.org/10.1016/S1002-0160(15)60032-7
  • Tošić, S., Alagić, S., Dimitrijević, M., Pavlović, A., & Nujkić, M. (2016). Plant parts of the apple tree (Malus spp.) as possible indicators of heavy metal pollution. Ambio, 45(4), 501–512. doi: 10.1007/s13280-015-0742-9
  • Vamerali, T., Bandiera, M., & Mosca, G. (2010). Field crops for phytoremediation of metal- contaminated land. A review. Environmental Chemistry Letters, 8(1), 1–17. doi: 10.1007/s10311-009-0268-0
  • Yang, Y., Zhou, X., Tie, B., Peng, L., Li, H., Wang, K., & Zeng, Q. (2017). Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil. Chemosphere, 188, 148–156. doi: 10.1016/j.chemosphere.2017.08.140