Midgut remodeling during the metamorphosis of Chironomus riparius, Meigen (1804)

Chemia Naissensis Volume 5, No.2 (2023) (стр. 22-31) 

АУТОР(И) / AUTHOR(S): Jelena Stojanović, Dimitrija Savić Zdravković, Andrea Žabar Popović, Aleksandra Milovanović and Đurađ Milošević

Е-АДРЕСА / E-MAIL: jelena.conic@pmf.edu.rs

Download Full Pdf   

DOI: 10.46793/ChemN5.2.22S


The holometabolous insects go through a complete metamorphosis that includes four life stages: egg, larva, pupa, and imago (adult). Chironomus riparius is a suggested model organism by the Organization for Economic Cooperation and Development (OECD) that is used in acute and chronic tests of chemicals. Tissue morphology of healthy non-biting midge larval stage was already described but the faith of the midgut digestive cells and tissue organization during the metamorphosis is unknown. We here described histological alterations of the midgut during ecdysis to distinguish them from the ones caused by toxins’ negative effects. The present study showed differences in tissue architecture of the midgut in the larval, prepupal, and pupal stages of development of C. riparius. During ecdysis, larval digestive cells detached from the midgut epithelium and moved to the lumen. In the pupa, the larval midgut layer was replaced with an adult midgut that had considerably reduced width. These changes in the midgut tissue morphology and organization probably follow changes in the environment and feeding behavior of C. riparius at different stages of development.


Chironomidae, metamorphosis, midgut, histology, xenobiotics


  • Arena, J. M. (1976). Introduction to general toxicology. JAMA, 236 (19), 2226.
  • Armitage, P. D., Cranston, P. S., & Pinder L. C. V. (1995). The Chironomidae: Biology and ecology of non-biting midges. (1st ed.). Springer Dordrecht.
  • Burtt, E. T., Perry, R. J. O., & McLachlan, A. J. (1986). Feeding and sexual dimorphism in adult midges (Diptera: Chironomidae). Holartic Ecology, 9 (1), 27-32.
  • Castagnola, A., & Jurat-Fuentes, J. L. (2016). Intestinal regeneration as an insect resistance mechanism to entomopathogenic bacteria. Current Opinion in Insect Science, 15, 104-110.
  • Chapman, R. F. (2012). The Insects: Structure and Function. (4th ed.). Cambridge University Press.
  • Dalai, S., Pakrashi, S., Chandrasekaran, N., & Mukherjee, A. (2013). Acute toxicity of TiO2 nanoparticles to Ceriodaphnia dubia under visible light and dark conditions in a freshwater system. PLoS One, 8(4), e62970.
  • Foucault, Q., Wieser, A., Waldvogel, A.-M., & Pfenninger, M. (2018). Establishing laboratory cultures and performing ecological and evolutionary experiments with the emerging model species Chironomus riparius. Journal of Applied Entomology, 143 (5), 584-592.
  • Franzetti, E., Huang, Z.-J., Shi, Y.-X., Xie, K., Deng, X. -J., Li, J.-P., Li, Q.-R., Yang, W.-Y., Zeng, W.-N., Casartelli, M., Deng, H.-M., Cappellozza, S., Grimaldi, A., Xia, Q., Tettamanti, G., Cao, Y., & Feng, Q. (2012). Autophagy precedes apoptosis during the remodeling of silkworm larval midgut. Apoptosis, 17(3), 305-324.
  • Gonçalves, S. P., Lucheta, F., de Souza, V. K., & Terra, N. R. (2012). The influence of xenobiotics in river sediment on the reproduction and survival of Daphnia magna, 1820, Straus. Acta Limnologica Brasiliensia, 24 (2), 220-234.
  • Hall, M. J. R., & Martín-Vega, D. (2019). Visualization of insect metamorphosis. Philosophical Transactions: Biological Sciences, 374 (1783), 20190071.
  • Hilsenhoff, W. L. (2001). Diversity and classification of insects and collembola. In J. H. Thorp & A. P. Covich (Ed.), Ecology and Classification of North American Freshwater Invertebrates (2nd ed) (pp. 661-731). Amsterdam: Elsevier.
  • Maddela, N. R., Ramakrishnan, B., Kakarla, D., Venkateswarlue, K., & Megharaj, M. (2022). Major contaminants of emerging concern in soils: a perspective on potential health risks. RSC Advances, 12 (20), 12396–12415.
  • Nelliot, A., Bond, N., & Hoshizaki, D. K. (2006). Fat-body remodeling in Drosophila melanogaster. Genesis, 44 (8), 396-400.
  • OECD (2004a) Test No. 218: Sediment-Water Chironomid Toxicity Using Spiked Sediment, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris.
  • OECD (2004b) Test No. 219: Sediment-Water Chironomid Toxicity Using Spiked Water, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris.
  • Richardi, V. S., Vicentini, M., Morais, G. S., Rebechi, D., da Silva, T. A., Fávaro, L. F. & Navarro- Silva, M. A. (2018). Effects of phenanthrene on different levels of biological organization in larvae of the sediment-dwelling invertebrate Chironomus sancticaroli (Diptera: Chironomidae). Environmental Pollution, 242 (A), 277-287.
  • Richardi, V. S., Vicentini, M., Rebechi, D., Favaro, L. F., & Navarro-Silva, M. A. (2015). Morpho- histological characterization of immature of the bioindicator midge Chironomus sancticaroli Strixino and Strixino (Diptera, Chironomidae). Revista Brasileira de Entomologia, 59 (3), 240- 250.
  • Rolff, J., Johnston, P. R., & Reynolds, S. (2019). Complete metamorphosis of insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 374 (1783), 20190063.
  • Stojanović, J. S., Milošević, Đ. D., Vitorović J. S., Savić Zdravković, D. N., Stanković, N. R., Stanković, J. B., & Vasiljević, P. J. (2021). Histopathology of Chironomus riparius (Diptera, Chironomidae) exposed to metal oxide nanoparticles. Archives of Biological Sciences, 73 (3), 319-329.
  • Tettamanti, G., Grimaldi, A., Casartelli, M., Ambrosetti, E., Ponti, B., Congiu, T., Ferrarese, R., Rivas-Pena, M. L., Pennacchio, F., & de Eguileor, M. (2007). Programmed cell death and stem cell differentiation are responsible for midgut replacement in Heliothis virescens during prepupal instar. Cell and Tissue Research, 330, 345–359.
  • United States Environmental Protection Agency. (2011). Emerging Contaminant Issues, Including Management of Emerging Contaminants in Wastewater. Emerging Contaminant Issues, Including Management Of Emerging Contaminants In Wastewater | Science Inventory | US EPA (last visited on 3.3.2023.)
  • Wu, Y., Parthasarathy, R., Bai, H., & Palli, S. R. (2006). Mechanisms of midgut remodeling: Juvenile hormone analog methoprene blocks midgut metamorphosis by modulating ecdysone action. Mechanisms of Development, 123 (7), 530-547.
  • Yao, M., He, L., McClements, D. J., & Xiao, H. (2015). Uptake of gold nanoparticles by intestinal epithelial cells: impact of particle size on their absorption, accumulation, and toxicity. Journal of Agricultural and Food Chemistry, 63 (36), 8044-8049.
  • Yu, Z., Li, Q., Wang, J., Yu, Y., Wang, Y., Zhou, Q., & Li, P. (2020). Reactive oxygen species- related nanoparticle toxicity in the biomedical field. Nanoscale Research Letters, 15, 115.