Elemental and morphological features of thermally modified clinoptilolite as an efficient sorbent for benzo(a)pyrene extraction from water preceding GC – MS analysis

Chemia Naissensis Volume 3, No.2 (2020) (стр. 1-27) 

АУТОР(И) / AUTHOR(S): Marija V. Dimitrijević, Dragoljub L. Miladinović Slobodan A. Ćirić, Nenad S. Кrstić, Jelena S. Nikolić, Violeta D. Mitić and Vesna P. Stankov Jovanović

Е-АДРЕСА / E-MAIL: marija.dimitrijevic@pmf.edu.rs

Download Full Pdf   

DOI: 10.46793/ChemN3.2.001D

САЖЕТАК / ABSTRACT:

Monitoring of benzo(a)pyrene (BaP) levels in water is of great importance because BaP  is used as a marker for pollution by other polycyclic aromatic hydrocarbons (PAHs). The elemental and morphological features of clinoptilolite used as a sorbent in dispersive micro-solid phase extraction (D-μ-SPE) of BaP from water samples, before Gas Chromatography – Mass Spectrometry determination (GC – MS) is described.

SEM micrographs demonstrated agglomerated particles of Clinoptilolite with no changes in particles, but with increased porosity for Clinoptilolite modified at 300 and 400 oC. The content of elements is lower in thermally modified Clinoptilolite at higher temperatures (300 and 400 oC) than for clinoptilolite treated at 120 oC. After the extraction, EDX analysis of clinoptilolite adsorbed BaP, showed the increased percentage of carbon in the modification prepared at 300 oC, indicating the structure of the applied sorbent is more suitable compared to one treated at 400 oC. Recovery values of surrogate standards demonstrate good extraction efficiency for modification at 300 oC and 400 oC, but cheaper modification (prepared at 300 oC) was selected for BaP analysis.

КЉУЧНЕ РЕЧИ / KEYWORDS:

SEM, EDX, GC – MS, PAH, Benzo(a)pyrene, Clinoptilolite

ЛИТЕРАТУРА / REFERENCES:

  • Abatal, M., Córdova Quiroz, A. V., Olguín, M. T., Vázquez-Olmos, A. R., Vargas, J., Anguebes- Franseschi, F., & Giácoman-Vallejos, G. (2019). Sorption of Pb(II) from Aqueous Solutions by Acid-Modified Clinoptilolite-Rich Tuffs with Different Si/Al Ratios. Applied Sciences, 9, 2415.
  • Abdulkerim Y. (2012). Influence of acid activation on the ion-exchange properties of manisa- gordes clinoptilolite. Physicochemical Problems of Mineral Processing, 48, 591–598.
  • Akimkhan, A. M. (2012). Ion Exchange Technologies. IntechOpen.
  • Akkoca, D. B., Yιlgιn, M., Ural, M., Akçin, H., & Mergen, A. (2013). Hydrothermal and thermal treatment of natural clinoptilolite zeolite from Bigadiç, Turkey: An experimental study. Geochemistry International, 51, 495–504.
  • Alberti, A. (1975). The crystal structure of two clinoptilolites. TMPM Tschermaks Mineralogische Und Petrographische Mitteilungen, 22, 25–37.
  • Alotaibi, R., Alenazey, F., Alotaibi, F., Wei, N., Al-Fatesh, A., & Fakeeha, A. (2015). Ni catalysts with different promoters supported on zeolite for dry reforming of methane. Applied Petrochemical Research, 5, 329–337.
  • Armbruster, T., & Gunter, M. E. (2001). Crystal Structures of Natural Zeolites. Reviews in Mineralogy and Geochemistry, 45, 1–67.
  • Auerbach, S. M., Carrado, K. A., & Dutta, P. K. (2003). Handbook of Zeolite Science and Technology. (1st ed.). CRC Press.
  • Baerlocher, C., McCusker, L. B., & Olson, D. H. (2007). C2/m. Atlas of Zeolite Framework Types, Amsterdam: Elsevier.
  • Bish, D.L., & Carey, J.W. (2001). Thermal behavior of natural zeolites. In Bish, D.L., Ming, D.W., (Ed.). Natural Zeolites: Occurrence, Properties, Applications (Reviews in Mineralogy and Geochemistry) (pp. 403–452). Washington: Mineralogical Society of America.
  • Bogdanov, B., Georgiev, D., Angelova, K., & Yaneva, K. Natural zeolites: Clinoptilolite Review, 730 International Science conference „Economics and Society Development on the Base of 731 Knowledge“, Stara Zagora, Bulgaria,
  • Boles, J.R. (1972). Composition, optical properties, cell dimensions and thermal stability of some heulandite group zeolites. American Mineralogist, 57, 1463-1493.
  • Cadar, O., Senila, M., Hoaghia, M. A., Scurtu, D., Miu, I., & Levei, E. A. (2020). Effects of Thermal Treatment on Natural Clinoptilolite-Rich Zeolite Behavior in Simulated Biological Fluids. Molecules, 25, 2570.
  • Canli, M., Yuksel, A., & Ugur, S. B. (2013). Removal of methylene blue by natural and Ca and K-exchanged zeolite treated with hydrogen peroxide. Physicochemical Problems of Mineral Processing, 49, 481–496.
  • Cejka, J. (2005). Zeolites and Ordered Mesoporous Materials: Progress and Prospects. The 1st 746 FEZA School on Zeolites, Prague, Czech Republic, Gulf Professional Publishing.
  • Ćirić, S., Mitić, V., Jovanović, S., Ilić, M., Nikolić, J., Stojanović, G., & Stankov Jovanović, V. (2018). Dispersive micro-solid phase extraction of 16 priority polycyclic aromatic hydrocarbons from water by using thermally treated clinoptilolite, and their quantification by GC-MS. Microchimica Acta, 185, 556.
  • Cobzaru, C. (2012). Handbook of Natural Zeolites.
  • Coombs, D.S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., Grice, J. D., Liebau, F., Mandarino, J.A., Minato, H., Nickel, E.H., Passaglia, E., Peacor, D.R., Quartieri, S., Rinaldi, R., Ross, M., Sheppard, R.A., Tillmanns, E., & Vezzalini, G. (1997). Recommended Nomenclature for Zeolite Minerals: Report of The Subcommittee on Zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35, 1571–1606.
  • Ćirić, S., Mitić, V., Nikolić, J., Dimitrijević, M., Ilić, M., Dimitrijević M., Simonović, S., & Stankov Jovanović, V. (2018). Recent developments in sorbent-based water samples treatments prior GC-MS analysis of polycyclic aromatic hydrocarbons. Chemia Naissensis, 1, 93-123.
  • Eroglu, N., Emekci, M., & Athanassiou, C. G. (2017). Applications of natural zeolites on agriculture and food production. Journal of the Science of Food and Agriculture, 97, 3487–3499.
  • Faghihian, H., & Kabiri-Tadi, M. (2010). A novel solid-phase extraction method for separation and preconcentration of zirconium. Microchimica Acta, 168, 147–152.
  • Favvas, E. P., Tsanaktsidis, C. G., Sapalidis, A. A., Tzilantonis, G. T., Papageorgiou, S. K., & Mitropoulos, A. C. (2016). Clinoptilolite, a natural zeolite material: Structural characterization and performance evaluation on its dehydration properties of hydrocarbon-based fuels. Microporous and Mesoporous Materials, 225, 385–391.
  • Ghazaghi M., Shirkhanloo H., Mousavi H. Z., & Rashidi A. M. (2015). Ultrasound-assisted dispersive solid phase extraction of cadmium(II) and lead(II) using a hybrid nanoadsorbent composed of graphene and the zeolite clinoptilolite. Microchimica Acta, 1, 1263–1272.
  • Ghiara M. R., Petti C., Franco E., Lonis R., Luxoro S., & Gnazzo L. (1999). Occurrence of 766 clinoptilolite and modernite in tertiary calc-alkaline pyroclastites from Sardinia (Italy). Clays and Clay Minerals, 47, 319-328.
  • Gorshunova, K. K., Travkina, O. S., Kustov, L. M., & Kutepov, B. I. (2016). Synthesis and adsorption properties of the cation exchange forms of OFF-type zeolite. Russian Journal of Physical Chemistry A, 90, 652–657.
  • Jha, V. K., & Hayashi, S. (2009). Modification on natural clinoptilolite zeolite for its NH4+ retention capacity. Journal of Hazardous Materials, 169, 29–35.
  • Kim, S., Robichaud, D. J., Beckham, G. T., Paton, R. S., & Nimlos, M. R. (2015). Ethanol Dehydration in HZSM-5 Studied by Density Functional Theory: Evidence for a Concerted Process. The Journal of Physical Chemistry A, 119, 3604–3614.
  • Kondo, J. N., Ito, K., Yoda, E., Wakabayashi, F., & Domen, K. (2005). An Ethoxy Intermediate in Ethanol Dehydration on Brønsted Acid Sites in Zeolite. The Journal of Physical Chemistry B, 109, 10969–10972.
  • Kowalczyk, P., Sprynskyy, M., Terzyk, A. P., Lebedynets, M., Namieśnik, J., & Buszewski, B. (2006). Porous structure of natural and modified clinoptilolites. Journal of Colloid and Interface Science, 297, 77–85.
  • Lima, A., Heleno, F., Afonso, R., & Coutrim, M. (2015). Determination of PAHs in Surface Waters from the Doce and Piracicaba Rivers in Brazil. Journal of Water Resource and Protection, 7, 422-429.
  • Marantos, I., Christidis, G.E., & Ulmanu, M. (2011). Zeolite formation and deposits. In Inglezakis, V.J., Zorpas, A.A. (Ed.) Natural Zeolites Handbook (pp. 19–36). Bentham Science Publishers Ltd.
  • Milovanovic, J., Stensrød, R., Myhrvold, E., Tschentscher, R., Stöcker, M., Lazarevic, S., & Rajic, N. (2015). Modification of natural clinoptilolite and ZSM-5 with different oxides and studying of the obtained products in lignin pyrolysis. Journal of the Serbian Chemical Society, 80, 717–729.
  • Moret, S., Purcaro, G., & Conte, L. S. (2005). Polycyclic aromatic hydrocarbons in vegetable oils from canned foods. European Journal of Lipid Science and Technology, 107, 488–496.
  • Muyela B., Shitandi A., & Ngure, R. (2012). Determination of benzo [a] pyrene levels in smoked and oil fried Lates niloticus. International Food Research Journal, 19, 1595–1600.
  • Roth, W. J., Nachtigall, P., Morris, R. E., & Čejka, J. (2014). Two-Dimensional Zeolites: Current Status and Perspectives. Chemical Reviews, 114, 4807–4837.
  • Rubin, H. (2001). Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke: a bio-historical perspective with updates. Carcinogenesis, 22, 1903–1930.
  • Wahono, K., Prasetyo, D. J., Jatmiko, T. H., Suwanto, A., Pratiwi, Hernawan, D., & Vasilev, (2019). Transformation of Mordenite-Clinoptilolite Natural Zeolite at Different Calcination Temperatures, The 2nd International Conference on Natural Products and Bioresource Sciences – IOP Conference Series: Earth and Environmental Science, 251, 120–129.
  • Sekulic, Z., Dakovic, A., Kragovic, M., Markovic, M., Ivosevic, B., & Kolonja, B. (2013). Quality of zeolit from Vranjska banja deposit according to size classes. Hemijska Industrija, 67, 663–669.
  • Stocker, K., Ellersdorfer, M., Lehner, M., & Raith, J. G. (2017). Characterization and Utilization of Natural Zeolites in Technical Applications. BHM Berg- Und Hüttenmännische Monatshefte, 162, 142–147.
  • Tsitsishvili, G.V., Andronikashvli, T.G., Kirov, G.R., & Filizova, L.D. (1992). Natural Zeolites, Ellis Horwood.
  • S. EPA. National Primary Drinking Water Standards, 2003.
  • Uppstad, H., Osnes, G. H., Cole, K. J., Phillips, D. H., Haugen, A., & Mollerup, S. (2011). Sex differences in susceptibility to PAHs is an intrinsic property of human lung adenocarcinoma cells. Lung Cancer, 71, 264–270.
  • Vjunov, A., Derewinski, M. A., Fulton, J. L., Camaioni, D. M., & Lercher, J. A. (2015). Impact of Zeolite Aging in Hot Liquid Water on Activity for Acid-Catalyzed Dehydration of Alcohols. Journal of the American Chemical Society, 137, 10374–10382.
  • Wang, S., & Zhu, Z. (2006). Characterisation and environmental application of an Australian natural zeolite for basic dye removal from aqueous solution. Journal of Hazardous Materials, 136, 946–952.
  • WHO, Guidelines for Drinking Water Quality, WHO, Geneva, Switzerland, 3rd edition, 2006.
  • Wnorowski, A., Tardif, M., Harnish, D., Poole, G., & Chiu, C. H. (2006). Correction of analytical results for recovery: determination of PAHs in ambient air, soil, and diesel emission control samples by isotope dilution gas chromatography-mass spectrometry. Polycyclic Aromatic Compounds, 26, 313–329.
  • Wu, Q. J., Wang, Q. Y., Wang, T., & Zhou, Y. M. (2015). Effects of clinoptilolite (zeolite) on attenuation of lipopolysaccharide-induced stress, growth and immune response in broiler chickens. Annals of Animal Science, 15, 681–697.
  • Xu, S. Z., Wang, R. Z., Wang, L. W., & Zhu, J. (2019). Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage. Energy, 167, 889–901.
  • Yokoi, T., Mochizuki, H., Namba, S., Kondo, J. N., & Tatsumi, T. (2015). Control of the Al Distribution in the Framework of ZSM-5 Zeolite and Its Evaluation by Solid-State NMR Technique and Catalytic Properties. The Journal of Physical Chemistry C, 119, 15303–15315.