Antioxidant activity of „Micromeria croatica“ (Pers.) Schott grown in plant tissue culture „in vitro“ versus ones from the natural habitats

Chemia Naissensis Volume 3, No.1 (2020) (стр. 121-134) 

АУТОР(И) / AUTHOR(S):  Svetlana M. Tošić, Dragana D. Stojičić, Bojan K. Zlatković, Violeta D. Mitić, Marija D. Ilić, Marija S. Marković, Vesna P. Stankov-Jovanović

Е-АДРЕСА / E-MAIL: tosicsvetlana59@yahoo.com

Download Full Pdf   

DOI: 10.46793/ChemN3.1.121T

САЖЕТАК / ABSTRACT:

Micromeria croatica, like many other species belonging to the Lamiaceae family, is characterized by good antioxidant activity. To avoid the exploitation of natural plant populations, it is recommended to grow them in vitro culture. The present study aimed to examine and compare the antioxidant potential of M. croatica obtain through nodal culture in vitro and collected from natural habitats. Different antioxidant methods were used: DPPH, ABTS, total reducing power, total phenol content, and flavonoid content. The obtained results indicate that the cultivation of plants by the in vitro culture technique stimulates the synthesis of secondary metabolites that promote antioxidant activity. It is increased in micropropagated plants primarily due to the increased phenol content by 136%. The possibility to test and then apply in practice the biological activity of the herb M. croatica is limited by the fact that the species is a local endemic.

КЉУЧНЕ РЕЧИ / KEYWORDS:

antioxidant activity, plant tissue culture in vitro, endemic, Micromeria croatica

ЛИТЕРАТУРА / REFERENCES:

  • Akin-Idowu, P. E., Ibitoye, D. O., & Ademoyegun, O. T. (2009). Tissue culture as a plant production technique for horticultural crops. African Journal of Biotechnology, 8(16), 3782-3788.
  • Angaji, S. A., Mousavi, S. F., & Babapour, E. (2012). Antioxidants: A few key points. Annals of Biological Research, 3 (8), 3968-3977.
  • Formisano, C., Oliviero, F., Rigano, D., Saabb, A. M., & Senatore, F. (2014). Chemical composition of essential oils and in vitro antioxidantproperties of extracts and essential oils of Calamintha origanifolia and Micromeria myrtifolia, two Lamiaceae from the Lebanon flora. Industrial Crops and Products, 62, 405– 411.
  • Grzegorczyk, I., Matkowski, A., & Wysokin’ska, H. (2007). Antioxidant activity of extracts from in vitro cultures of Salvia officinalis L. Food Chemistry, 104, 536–541.
  • Güllüce, M., Sökmen, M., Şahin, F., Sökmen, A., Adigüzel, A., & Özer, H. (2004). Biological activities of the essential oil and methanolic extract of Micromeria fruticosa (L) Druce ssp serpyllifolia (Bieb) PH Davis plants from the eastern Anatolia region of Turkey. Journal of the Science of Food and Agriculture, 84(7), 735–741.
  • Kereša, S., Andrijanić, Z., Kremer, D., Habuš- Jerčić, I., Barić, M., Batelja- Lodeta, K., Bolarić, S., & Bošnjak- Mihovilović, A. (2018). Efficient micropropagation and rooting of Micromeria croatica (Pers.) Schott (Lamiaceae). Poljoprivreda, 24 (2), 27-33.
  • Kiferle, C., Lucchesini, M., Mensuali-Sodi, A., Maggini, R., Raffaelli, A., & Pardossi, A. (2011). Rosmarinic acid content in basil plants grown in vitro and in hydroponic. Central European Journal of Biology, 6, 946-957.
  • Li, H. B., Cheng, K. W., Wong, C. C., Fan, K. W., Chen, F., & Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chemistry 102, 771– 776.
  • Lopez, V., Akerreta, S., Casanova, E., Garcia-Mina, J. M., Cavero, R. Y., & Calvo, M. I. (2007). In vitro antioxidant antirhizopus activities of Lamiaceae herbal extracts. Plant Foods and Human Nutrition, 62, 151- 155.
  • Matkowski, A. (2008). Plant in vitro culture for the production of antioxidants. A review, Biotechnology Advances, 26, 548–560.
  • Mitić, V., Stankov-Jovanović, V., Jovanović, O., Palić, I., Djordjević, A., & Stojanović G. (2011). Composition and antioxidant activity of hydrodistilled essential oil of Serbian Ajuga chamaepitys (L.) Schreber ssp chia (Schreber) Arcangeli. Journal of Essential Oil Research, 23(6), 70-74.
  • Mulabagal, V., & Tsay, H. S. (2004). Plant Cell Cultures – An alternative and efficient source for the production of biologically important secondary metabolites. International Journal of Applied Science and Engineering, 2 (1), 29-48.
  • Murashige, T., & Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiology, 15, 473-497.
  • Oeztuerk, M., Kolak, U., Topcu, G., Oeksuez, S., & Choudhary, M. I. (2011). Antioxidant and anticholinesterase active constituents from Micromeria cilicica by radical-scavenging activity-guided fractionation. Food Chemistry, 126, 31–38.
  • Rothe, G., Hachiya, A., Yamada, Y., Hashimoto, T., & Dräger B. (2003). Alkaloids in plants and roots cultures of Atropa belladonna overexpressing putrescine N-methyltransferase. Journal of Experimental Botany, 54, 2065-2070.
  • Saha, S., Kader, A., Sengupta, C., & Ghosh, P. (2012). In Vitro propagation of Ocimum gratissimum L. (Lamiaceae) and its evaluation of genetic fidelity using RAPD marker. American Journal of Plant Sciences, 3, 64-74.
  • Debnath, C. S., & Teixeira da Silva, A. J. (2007). Strawberry culture in vitro: applications in genetic transformation and biotechnology. Fruit, Vegetable and Cereal Science and Biotechnology, 1(1), 1-12.
  • Santos-Gomes, P. C., Seabra, R. M., Andrade, P. B., & Fernandes-Ferreira, M. (2002). Phenolic antioxidant compounds produced by in vitro shoots of sage (Salvia officinalis L). Plant Science, 62, 981-987.
  • Surveswaran, S., Cai, Y. Z., Corke, H., & Sun, M. (2007). Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chemistry, 102, 938–953.
  • Tosun, M., Ercisli, S., Sengul, M., Ozer, H., Pola, T., & Ozturk, E. (2009). Antioxidant properties and total phenolic content of eight Salvia species from Turkey. Biological Research, 42, 175-181.
  • Tošić, S., Stojičić, D., Stankov-Jovanović, V., Mitić, V., Mihajilov-Krstev, T., & Zlatković, B. (2015). Chemical composition, antioxidant and antimicrobial activities of micropropagated and native Micromeria pulegium (Lamiaceae) extracts. Oxidation Communications, 38, 55–66.
  • Tosic, S. M., Stojicic, D. D., Slavkovska, V. N., Mihajilov-Krstev, T. M., Zlatkovic, B. K., Budimir, S. M., & Uzelac, B. B. (2019). Phytochemical composition and biological activities of native and in vitro- propagated Micromeria croatica (Pers.) Schott (Lamiaceae). Planta, 249(5), 1365-1377.
  • Vladimir-Knežević, S., Blažeković, B., Bival -Štefan, M., Alegro, A., Köszegy, T., & Petrik, J. (2011). Antioxidant activities and polyphenolic contents of three selected Micromeria species from Croatia. Molecules, 16, 1454-1470.
  • Šamec, D., Gruz, J., Durgo, K., Kremer, D., Kosalec, I., Valek-Žulj, L., Martinez, S., Salopek-Sondi, B., & Piljac-Žegarac, J. (2015). Molecular and cellular approach in the study of antioxidant/pro-oxidant properties of Micromeria croatica (Pers.) Schott, Natural Product Research: Formerly Natural Product Letters, 29(18), 1770-1774.