Photostability of bacteriochlorophyll „a“ and bacteriopheophytin „a“ against UV-A, UV-B and visible light treatments in methanol solutions

Chemia Naissensis Volume 2, No.2 (2019) (str. 82-97) 

AUTOR(I) / AUTHOR(S): Aleksandar Lazarević, Sanja Petrović, Dragan Cvetković, Ljiljana Stanojević, Mirjana Cvijović, Jelena Zvezdanović

E-ADRESA / E-MAIL: jelite74@yahoo.com

Download Full Pdf   

DOI: 10.46793/ChemN2.2.082L

SAŽETAK / ABSTRACT:

Bacteriochlorins as the porphyrins derivatives are well known photosensitizers with great potential for use in various fields of pharmacy and medicine. Photostability of selected bacteriochlorins, bacteriochlorophyll a and bacteriopheophytin a, in different methanol solutions (with and without lipids) during continual UV-A, UV-B and visible light treatments were studied using absorption UV-VIS spectroscopy providing kinetic analysis. Applied irradiation treatments resulted in irreversible degradation of both selected bacteriochlorins obeying the first order of kinetics. Bacteriopheophytin a showed significantly higher photostability in comparison to bacteriochlorophyll a for all applied irradiation treatments, for about one to three orders of magnitude. Photochemical degradation of bacteriochlorins is energy dependant process, governed by photons energy input.Lipid environment play stability role for both bacteriochlorins against all, UV-A, UV-B and visible light treatments. Bacteriopheophytin a induced lipid peroxidation processduring UV-A irradiation treatment.

KLJUČNE REČI / KEYWORDS:

photostability, bacteriopheophytin a, bacteriochlorophyll a, irradiation, lipids, lipid peroxidation

LITERATURA / REFERENCES:

  • Brandis, A. S., Salomon, Y., & Scherz, A. (2006). Bacteriochlorophyll sensitizers in photodynamic therapy. In B. Grimm, J. Porra, W. Rudiger and H. Scheer (Eds.) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications (pp. 485–494). Dordrecht: Springer.
  • Cotton, T. M., & Van Duyne, R. P. (1979). An electrochemical investigation of the redox properties  of  bacteriochlorophyll  and  bacteriopheophytin  in  aprotic solvents. Journal of the American Chemical Society, 101 (25), 7605-7612.
  • Cvetković, D., & Marković, D. (2011). Beta-carotene suppression of benzophenone- sensitized lipid peroxidation  in  hexane  through  additional  chain-breaking activities. Radiation Physics and Chemistry, 80 (1), 76-84.
  • DeRosa, M. C., & Crutchley, R. J. (2002). Photosensitized singlet oxygen and its applications. Coordination Chemistry Reviews, 233, 351-371.
  • Drews, G., & Giesbrecht, P. (1966). Rhodopseudomonas viridis, nov. spec., ein neu isoliertes, obligat phototrophes Bakterium. Archiv für Mikrobiologie, 53 (3), 255- 262.
  • Grimm, B., Porra, R. J., Rüdiger, W., & Scheer, H. (Eds.). (2007). Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications (Vol. 25). Springer Science & Business Media.
  • Henderson, B. W., & Dougherty, T. J. (1992). How does photodynamic therapy work? Photochemistry and Photobiology, 55 (1), 145-157.
  • Henderson, B. W., Potter, W. R., Sumlin, A. B., Owczarczak, B., Nowakowski, F. S., & Dougherty, T. J.(1990). Bacteriochlorophyll-a as photosensitizer for photodynamic treatment of transplantable murine tumors. Photodynamic Therapy: Mechanisms II, 1203, 211–222.
  • Katz, J. J., Shipman, L. L., Cotton, T. M., & Janson, T. R. (1978). Chlorophyll aggregation: coordination interactions in chlorophyll monomers, dimers, and oligomers. The Porphyrins, 5, 401-458.
  • Kay, A., & Gräcel, M. (1993). Artificial photosynthesis. 1. Photosensitization of 2 solar cells with chlorophyll derivatives and related natural porphyrins. Journal of Physical Chemistry, 97, 6272-6277.
  • Ke, B. (2001). Photosynthesis photobiochemistry and photobiophysics (Vol. 10). Springer Science & Business Media.
  • Kobayashi, M., Akiyama, M., Kano, H., & Kise, H. (2006). Spectroscopy and structure determination. In Chlorophylls and bacteriochlorophylls (pp. 79-94). Dordrecht: Springer.
  • Kübler, A. C. (2005). Photodynamic therapy. Medical Laser Application, 20 (1), 37-45.
  • Melkozernov, A. N., & Blankenship, R. E. (2006). Photosynthetic functions of chlorophylls. In Chlorophylls and Bacteriochlorophylls (pp. 397-412). Dordrecht: Springer.
  • Pandey, R. K., & Zheng, G. (2000). Porphyrins as photosensitizers in photodynamic therapy. The Porphyrin Handbook, 6, 157-230.
  • Permentier, H. P., Neerken, S., Overmann, J., & Amesz, J. (2001). A bacteriochlorophyll a antenna complex from purple bacteria absorbing at 963 nm. Biochemistry, 40, 5573–5578.
  • Petrović, S., Zvezdanović, J., & Marković, D. (2017). Chlorophyll degradation in aqueous mediums induced by light and UV-B irradiation: An UHPLC-ESI-MS  study. Radiation Physics and Chemistry, 141, 8-16.
  • Repetto, M. G., Ferrarotti, N. F., & Boveris, A. (2010). The involvement of transition metal ions on iron-dependent lipid peroxidation. Archives of Toxicology, 84 (4), 255- 262.
  • Repetto, M., Semprine, J., & Boveris, A. (2012). Lipid peroxidation: chemical mechanism, biological implications and analytical determination. In Lipid Peroxidation. InTechOpen.
  • Rinco, O., Brenton, J., Douglas, A., Maxwell, A., Henderson, M., Indrelie, K., Wessels, J.,& Widin, J. (2009). The effect of porphyrin structure on binding to human serum albumin by fluorescence spectroscopy. Journal of Photochemistry and Photobiology A: Chemistry, 208 (2-3), 91-96.
  • Scheer, H. (1991).Structure and occurrence of chlorophylls. In Chlorophylls (pp. 1- 30).Boca Raton: CRC Press.
  • Stanojević, J. S., Marković, D. Z., & Zvezdanović, J. B. (2013). Benzophenone suppression of quercetin antioxidant activity towards lipids under UV-B irradiation regime: Detection by HPLC chromatography. Journal of Chemistry, 2013, 1-9.
  • Sternberg, E. D., Dolphin, D., & Brückner, C. (1998). Porphyrin-based photosensitizers for use in photodynamic therapy. Tetrahedron, 54(17), 4151-4202.
  • Weiss, C. (1978). Electronic Absorption Spectra of Chlorophylls. In D. Dolphin (Ed.), The Porphyrins, Vol. III, Physical Chemistry, Part A (pp. 211-223). New York: Academic Press.
  • Yano, S., Hirohara, S., Obata, M., Hagiya, Y., Ogura, S.-i., Ikeda, A., Kataoka, H., Tanaka, M.,& Joh, T. (2011). Current states and future views in photodynamic therapy. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12 (1), 46-67.
  • Yin, H., Xu, L., & Porter, N. A. (2011). Free radical lipid peroxidation: mechanisms and analysis. Chemical Reviews, 111 (10), 5944-5972.
  • Zvezdanović, J., Marković D., CvetkovićD. & Stanojević J. (2012). UV-induced change in quercetin antioxidant activity toward benzophenone initiated lipid peroxidation. Journal of the Serbian Chemical Society, 77 (11), 1571-1588.
  • Zvezdanović, J., & Marković, D. (2008). Bleaching of chlorophylls by UV irradiation in vitro: the effects on chlorophyll organization in acetone and n-hexane. Journal of the Serbian Chemical Society, 73 (3), 271-282.
  • Zvezdanović, J., Cvetić, T., Veljović-Jovanović, S., & Marković, D. (2009). Chlorophyll bleaching by UV-irradiation in vitro and in situ: Absorption and fluorescence studies. Radiation Physics and Chemistry, 78 (1), 25-32.