Између броја и симбола: репрезентације једначина у уџбеницима млађих разреда основне школе

Међународна научна конференција Васпитање и образовање између теорије и праксе, 24. 10. 2025. (књига 1, 279-296. стр.) 

 

АУТОР(И) / AUTHOR(S): Ненад Милинковић , Сања Маричић , Јелена Стојкановић 

 

  

Download Full Pdf   

DOI:  10.46793/zbVO25UEI.279M

САЖЕТАК / ABSTRACT:

Развој алгебарског мишљења у млађим разредима основне школе представља један од кључних изазова савремене наставе математике. Циљ овог истраживања био је да се утврде заступљеност и врсте репрезентација које се користе у уџбеницима математике у Србији приликом увођења садржаја о једначинама, као и да се испита у којој мери задаци подстичу комбиновање различитих представа и прелаз из једне у другу. Узорак је обухватио уџбенике математике за млађе разреде основне школе четири издавачке куће. Истраживање је засновано на анализи садржаја, при чему су задаци класификовани према доминантној репрезентацији: вербалној, нумеричкој, графичкој и симболичкој. Резултати показују да доминирају вербалне репрезентације, а симболичка се јавља као доминантна тек у уџбеницима за четврти разред, и да је број задатака са комбинованим представама мали. Експлицитни захтеви за превођење између представа су ретки или одсутни у уводним примерима. На основу налаза може се закључити да постоји потреба за систематским увођењем нумеричких и графичких активности, као и потреба за експлицитним захтевима за превођење представа једне у другу, како би симболичка нотација била смислен резултат постепеног развоја, а не крајњи формални корак.

КЉУЧНЕ РЕЧИ / KEYWORDS:

алгебра, репрезентација, уџбеник, једначина, математика

ПРОЈЕКАТ / ACKNOWLEDGEMENT:

ЛИТЕРАТУРА / REFERENCES:

  • Ainsworth, S., Bibby, P. & Wood, D. (1997). Information technology and multiple representations: New opportunities – new problems. Journal of Information Technology for Teacher Education, 6(1), 93–105. https://doi.org/10.1080/14759399700200006
  • Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183–198. https://doi.org/10.1016/j.learninstruc.2006.03.001
  • Blanton, M., Brizuela, B. M., Gardiner, A. M., Sawrey, K. & Newman-Owens, A. (2015). A learning trajectory in 6-year-olds’ thinking about generalizing functional relationships. Journal for Research in Mathematics Education, 46(5), 511–558. https://doi.org/10.5951/jresematheduc.46.5.0511
  • Blanton, M. L., Brizuela, B. M., Murphy Gardiner, A., Sawrey, K. & NewmanOwens, A. (2017). A progression in first-grade children’s thinking about variable and variable notation in functional relationships. Educational Studies in Mathematics, 95(2), 181–202. https://doi.org/10.1007/s10649-016-9745-0
  • Blanton, M. L. (2008). Algebra and the elementary classroom: Transforming thinking, transforming practice. Portsmouth, NH: Heinemann.
  • Brizuela, B. M. & Earnest, D. (2008). Multiple notational systems and algebraic understandings: The case of the “best deal” problem. In D. Carraher, J. Kaput & M. L. Blanton (eds.): Algebra in the early grades (pp. 273–301). New York: Lawrence Erlbaum.
  • Cañadas, M. C., Brizuela, B. M. & Blanton, M. (2016). Second graders articulating ideas about linear functional relationships. Journal of Mathematical Behavior, 41, 87–103. https://doi.org/10.1016/j.jmathb.2015.10.004
  • Dougherty, B. J. & Slovin, H. (2004). Generalized diagrams as a tool for young children’s problem solving. In M. J. Høines & A. B. Fuglestad (eds.): Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, Vol. 2 (pp. 295–302). Bergen: Bergen University College.
  • Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1–2), 103–131. https://doi.org/10.1007/s10649-006-0400-z
  • Friedlander, A. & Tabach, M. (2001). Promoting multiple representations in algebra. In A. A. Cuoco (eds.), 2001 Yearbook of the National Council of Teachers of Mathematics: The roles of representation in school mathematics (pp. 173–185). Reston, VA: National Council of Teachers of Mathematics.
  • Goldin, G. A. & Kaput, J. J. (1996). A joint perspective on the idea of representation in learning and doing mathematics. In L. P. Steffe, P. Nesher, P. Cobb,
  • A. Goldin & B. Greer (eds.): Theories of mathematical learning (pp. 397–430). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Kaput, J. J. (2008). What is algebra? What is algebraic reasoning? In J. J. Kaput, D. W. Carraher & M. L. Blanton (eds.): Algebra in the early grades (pp. 5–17). New York: Routledge.
  • Knuth, E. J., Stephens, A. C., McNeil, N. M. & Alibali, M. W. (2006). Does understanding the equal sign matter? Evidence from solving equations. Journal for Research in Mathematics Education, 37(4), 297–312. https://doi.org/10.2307/30034852
  • MacGregor, M. & Stacey, K. (1997). Students’ understanding of algebraic notation: 11–15. Educational Studies in Mathematics, 33(1), 1–19. https://doi.org/10.1023/A:1002970913563
  • Pinto, E. & Cañadas, M. C. (2021). Generalizations of third and fifth graders within a functional approach to early algebra. Mathematics Education Research Journal, 33(1), 113–134. https://doi.org/10.1007/s13394-019-00300-2
  • Prediger, S. (2019). Investigating and promoting teachers’ expertise for language-responsive mathematics teaching. Mathematics Education Research Journal, 31(4), 367–392. https://doi.org/10.1007/s13394-019-00258-1
  • Radford, L. (2014). The progressive development of early embodied algebraic thinking. Mathematics Education Research Journal, 26(2), 257–277. https://doi.org/10.1007/s13394-013-0087-2
  • Ramírez, R., Cañadas, M. C. & Damián, A. (2022). Structures and representations used by 6th graders when working with quadratic functions. ZDM – Mathematics Education, 54(6), 1393–1406. https://doi.org/10.1007/s11858-022-01423-w
  • Rittle-Johnson, B. & Star, J. R. (2007). Does comparing solution methods facilitate conceptual and procedural knowledge? Journal of Educational Psychology, 99(3), 561–574. https://doi.org/10.1037/0022-0663.99.3.561
  • Spencer, M., Fuchs, L. S. & Fuchs, D. (2020). Language-related longitudinal predictors of arithmetic word problem solving: A structural equation modeling approach. Contemporary Educational Psychology, 60, 101825. https://doi.org/10.1016/j.cedpsych.2019.101825
  • Stephens, A. C., Fonger, N. L., Strachota, S. N., Isler, I., Blanton, M. L., Knuth, E. J. & Gardiner, A. M. (2017). A learning progression for elementary students’ functional thinking. Mathematical Thinking and Learning, 19(3), 143–166. https://doi.org/10.1080/10986065.2017.1328636
  • Tabachneck-Schijf, H. J. M., Leonardo, A. M. & Simon, H. A. (1997). CaMeRa: A computational model of multiple representations. Cognitive Science, 21(3), 305–350. https://doi.org/10.1016/S0364-0213(99)80026-3
  • Warren, E. A., Cooper, T. J. & Lamb, J. T. (2006). Investigating functional thinking in the elementary classroom: Foundations of early algebraic reasoning. Journal of Mathematical Behavior, 25(3), 208–223. https://doi.org/10.1016/j.jmathb.2006.09.006
  • Warren, E. A. & Cooper, T. J. (2008). Generalising the pattern rule for visual growth patterns: Actions that support 8-year-olds’ thinking. Educational Studies in Mathematics, 67(2), 171–185. https://doi.org/10.1007/s10649-007-9092-2