10th International Scientific Conference Technics, Informatics and Education – TIE 2024, str. 239-248
АУТОР(И) / AUTHOR(S): Veljko Aleksić
DOI: 10.46793/TIE24.239A
САЖЕТАК /ABSTRACT:
The integration of artificial intelligence concepts into digital games design has revolutionized the gaming industry. Among other elements, artificial intelligence significantly influenced modern gameplay mechanics, elevated player experiences, and streamlined game development processes. Road traffic safety driving simulation games are an emerging educational tool aimed at improving road safety awareness and skills among drivers. A critical component of these games is the AI-driven Non-Playable Characters (e.g., NPCs) that expand dynamic and immersive gameplay experience by exhibiting various realistic road users’ behavior patterns, traffic conditions and player actions adaptation. The adaptive AI algorithms ensure balanced difficulty, catering to gamers’ diverse driving skill levels, while procedural content generation opened endless possibilities in designing game levels, environments, and tasks, enhancing game replayability and longevity. AI-powered virtual assistants can provide players with seamless in-game guidance, enhancing their engagement without disrupting the gameplay flow. Additionally, adaptable intelligent road traffic conditions can challenge players to strategize and adapt, contributing to more compelling and immersive gaming experiences. Contemporary software tools and engines streamlined game development processes and accelerated asset creation, bug detection, and playtesting. Automated game design processes, such as AI-driven level and procedural generation, expedited prototyping and iteration phases, while AI-driven analytics tools offered valuable insights into player behavior and preferences, enabling developers to optimize game mechanics and its content for maximum impact. The impact of artificial influence concepts on digital game design is poised to grow even further, promising exciting innovations and possibilities for future game designers and enthusiasts alike.
КЉУЧНЕ РЕЧИ / KEYWORDS:
digital games; traffic safety; artificial intelligence; NPCs
ПРОЈЕКАТ / ACKNOWLEDGEMENT:
This study was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia, and these results are parts of the Grant No. 451-03-66/2024-03/200132 with University of Kragujevac, Faculty of Technical Sciences Čačak.
ЛИТЕРАТУРА / REFERENCES:
- Schijven, M. P., & Kikkawa, T. (2022). Is there any (artificial) intelligence in gaming? Simulation & Gaming, 53(4), 315–316. doi:10.1177/10468781221101685
- Aleksić, V., Ivanović, M. (2017). Early Adolescent Gender and Multiple Intelligences Profiles as Predictors of Digital Gameplay Preferences. Croatian Journal of Education, 19(3), pp. 697-727. doi:10.15516/cje.v19i3.2262
- Vermesan, O. (2021). Artificial Intelligence for Digitising Industry. Artificial Intelligence for Digitising Industry, 1–541. doi:10.13052/rp-9788770226639
- Aleksić, V. (2023). Razvoj digitalnih igara. Čačak: Fakultet tehničkih nauka. ISBN 978-86-7776-269-8
- Roberts, P. (2022). Artificial Intelligence in Games. CRC Press. doi:10.1201/
9781003305835 - Millington, I. (2019). Procedural Content Generation. AI for Games, 669–738. doi:10.1201/9781351053303-8
- Sun, L., Kangas, M., & Ruokamo, H. (2023). Game-based features in intelligent game-based learning environments: a systematic literature review. Interactive Learning Environments, 1–17. doi:10.1080/10494820.2179638
- Mendoza Guevarra, E. T. (2020). Creating Game Environments in Blender 3D. Apress. doi:10.1007/978-1-4842-6174-3
- Johnson, G. (2019). Non-Player Characters, Foes, and Monsters. Developing Creative Content for Games, 151–168. doi:10.1201/9781315152554-16
- Wagner, F., Schmuki, R., Wagner, T., & Wolstenholme, P. (2006). Modeling software with finite state machines: a practical approach. Auerbach Publications. ISBN 978-08-4938-086-0
- Lilis, Y., & Savidis, A. (2014). An Integrated Development Framework for Tabletop Computer Games. Computers in Entertainment, 12(3), 1–34. doi: 10.1145/2633423
- Filho, M. E. M., Souza, A. J. S., Tedesco, P. C. A. R., Silva, D. R. D., & Ramalho, G. L. (2009). An Integrated Development Model for Character-Based Games. 2009 VIII Brazilian Symposium on Games and Digital Entertainment. doi: 10.1109/sbgames.2009.30
- Jung, W.-J. (2022). RPG User Play Observation Learning-based Guide NPC AI Reinforcement Learning. Journal of Korea Game Society, 22(5), 73–83. doi: 10.7583/jkgs.2022.22.5.73
- Kay, M., & Powley, E. J. (2018). The effect of visualising NPC pathfinding on player exploration. Proceedings of the 13th International Conference on the Foundations of Digital Games. doi: 10.1145/3235765.3235824
- Handy Permana, S. D., Yogha Bintoro, K. B., Arifitama, B., & Syahputra, A. (2018). Comparative Analysis of Pathfinding Algorithms A *, Dijkstra, and BFS on Maze Runner Game. IJISTECH (International Journal Of Information System & Technology), 1(2), 1. doi:10.30645/ijistech.v1i2.7
- Krisdiawan, R. A., Permana, A., Darmawan, E., Nugraha, F., & Kriswandiyanto, A. (2021). Implementation Dijkstra’s Algorithm for Non-Players Characters in the Game Dark Lumber. Journal of Physics: Conference Series, 1933(1), 012006. doi:10.1088/1742-6596/1933/1/012006
- Sazaki, Y., Satria, H., & Syahroyni, M. (2017). Comparison of A* and dynamic pathfinding algorithm with dynamic pathfinding algorithm for NPC on car racing game. 2017 11th International Conference on Telecommunication Systems Services and Applications (TSSA). doi:10.1109/tssa.2017.8272918
- Saranya, C., Unnikrishnan, M., Ali, S. A., Sheela, D. S., & Lalithambika, Dr. V. R. (2016). Terrain Based D∗ Algorithm for Path Planning. IFAC-PapersOnLine, 49(1), 178– doi:10.1016/j.ifacol.2016.03.049
- Daud, A. A. G., Muhaqiqin, M., & Sintaro, S. (2021). Comparison of Jump Point Search Algorithms and Basic Theta* Algorithms in Determining the Shortest Route in NPC in Maze Games. In The 1st International Conference on Advanced Information Technology and Communication (IC-AITC). 3-4 September, Universitas Teknokrat Indonesia.
- Pandey, G., Rao, K. R., & Mohan, D. (2014). A Review of Cellular Automata Model for Heterogeneous Traffic Conditions. Traffic and Granular Flow ’13, 471-478. doi:10.1007/978-3-319-10629-8_52
- Zhang, X., & Zhang, X. (2022). Based on Navmesh to implement AI intelligent pathfinding in three-dimensional maps in UE4. Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence, 23-25th Dec, Sanya, China, pp.1-5. doi:10.1145/3579654.3579752
- Kapi, A. Y. (2020). A Review on Informed Search Algorithms for Video Games Pathfinding. International Journal of Advanced Trends in Computer Science and Engineering, 9(3), 2756–2764. doi:10.30534/ijatcse/2020/42932020
- Cho, D.-H., Lee, Y.-H., Kim, J.-H., Park, S.-Y., & Rhee, D.-W. (2011). NPC Control Model for Defense in Soccer Game Applying the Decision Tree Learning Algorithm. Journal of Korea Game Society, 11(6), 61–70. doi: 10.7583/2011.11.6.61
- Belle, S., Gittens, C., & Graham, T. C. N. (2019). Programming with Affect: How Behaviour Trees and a Lightweight Cognitive Architecture Enable the Development of Non-Player Characters with Emotions. 2019 IEEE Games, Entertainment, Media Conference (GEM). 18-21th June, New Haven, USA. doi:10.1109/gem.2019.8811542
- Hubble, A., Moorin, J., & Khuman, A. S. (2021). Artificial Intelligence in FPS Games: NPC Difficulty Effects on Gameplay. Fuzzy Logic, 165–190. doi:10.1007/978-3-030-66474-9_11
- Ying, Z., Edwards, N., & Kutuzov, M. (2024). Efficient Visibility Approximation for Game AI using Neural Omnidirectional Distance Fields. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 7(1), 1–15. doi: 10.1145/3651289
- Choi, H., Han, S., Jeon, J., Ahn, S., & Yoo, J. (2024). Simulation-Based SOTIF Hazard Analysis and Risk Assessment Methodology for Autonomous Driving System. Transaction of the Korean Society of Automotive Engineers, 32(4), 331–347. doi:10.7467/ksae.2024.32.4.331
- Knievel, C., Pejic, A., Krüger, L., Ziegler, C., & Adamy, J. (2023). Boids Flocking Algorithm for Situation Assessment of Driver Assistance Systems. IEEE Open Journal of Intelligent Transportation Systems, 4, 71–82. doi:10.1109/ojits.2023.3236985
- Edwards, G., Subianto, N., Englund, D., Goh, J. W., Coughran, N., Milton, Z., Mirnateghi, N., & Ali Shah, S. A. (2021). The Role of Machine Learning in Game Development Domain – A Review of Current Trends and Future Directions. 2021 Digital Image Computing: Techniques and Applications (DICTA), pp. 1-7, 29-30th November, Gold Coast, Australia. doi:10.1109/dicta52665.2021.9647261
- Cherukuri, A., & Glavin, F. G. (2022). Balancing the Performance of a FightingICE Agent using Reinforcement Learning and Skilled Experience Catalogue. 2022 IEEE Games, Entertainment, Media Conference (GEM), pp.1-6, 27-30th November, St. Michael, Barbados. doi:10.1109/gem56474.10017566
- Maulana, A., Mardi, S., Yuniarno, E. M., & Suprapto, Y. K. (2022). Behavior NPC Prediction Using Deep Learning. 2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM), pp. 1-5, 22-23th November, Surabaya, Indonesia. doi: 10.1109/cenim56801.2022.10037328
- Sehrawat, A., & Raj, G. (2018). Intelligent PC Games: Comparison of Neural Network Based AI against Pre-Scripted AI. 2018 International Conference on Advances in Computing and Communication Engineering (ICACCE), 378-383, 22-23th June, Paris, France. doi:10.1109/icacce.2018.8441745
- Ryan, J., Summerville, A. J., Mateas, M., & Wardrip-Fruin, N. (2016). Translating Player Dialogue into Meaning Representations Using LSTMs. Lecture Notes in Computer Science, 383–386 doi: 10.1007/978-3-319-47665-0_38
- Wang, J., & Zhao, R. (2022). Deep reinforcement learning and application in self-driving. Theories and Practices of Self-Driving Vehicles, 307–326. doi:10.1016/b978-0-323-99448-4.00010-2
- Arun Sampaul Thomas, G., Muthukaruppasamy, S., Nandha Gopal, J., Sudha, G., & Saravanan, K. (2024). Unleashing the Power of XAI (Explainable Artificial Intelligence). Explainable AI (XAI) for Sustainable Development, 303–316. doi:10.1201/9781003457176-18
- Vingilis, E., Yıldırım-Yenier, Z., Fischer, P., Wiesenthal, D. L., Wickens, C. M., Mann, R. E., & Seeley, J. (2016). Self-concept as a risky driver: Mediating the relationship between racing video games and on-road driving violations in a community-based sample. Transportation Research Part F: Traffic Psychology and Behaviour, 43, 15–23. doi:10.1016/j.trf.2016.09.021
- Forneris, L., Pighetti, A., Lazzaroni, L., Bellotti, F., Capello, A., Cossu, M., & Berta, R. (2023). Implementing Deep Reinforcement Learning (DRL)-based Driving Styles for Non-Player Vehicles. International Journal of Serious Games, 10(4), 153–170. doi:10.17083/ijsg.638