2nd International Conference on Chemo and Bioinformatics ICCBIKG 2023 (653-656)
АУТОР(И) / AUTHOR(S): Marko D. Radovanović, Ignjat Filipović, Maja Djukić, Marija Ristić, Matija Zlatar, Zoran D. Matović
Е-АДРЕСА / E-MAIL: marko.radovanovic@pmf.kg.ac.rs
DOI: 10.46793/ICCBI23.653R
САЖЕТАК / ABSTRACT:
This study explores the significance of density functional theory (DFT) calculations with relativistic effects for two ethylenediaminetetraacetate (edta) type complexes: trans(O5)-[M(eddadp)]- (M = Rh3+, Co3+). Relativistic effects affect the electronic structure of a molecule and, thus, its chemical and spectroscopic properties. With the use of scalar relativistic corrections (SR-ZORA), as implemented in the ADF package, with the B3LYP functional, the TZP basis set and the COSMO solvation model, structural analyses show improved predictions for the geometries of both complexes. In the case of the Rh3+ complex, the differences in metal-ligand bond lengths with and without the relativistic effects were small. In the case of the Co3+ complex, the changes in metal-ligand bond lengths due to the relativistic effects were slightly more pronounced. Compared to experimental values, excitation energies are better when including relativistic corrections, especially for the Rh3+ complex. These results indicate the importance of relativistic DFT calculations for heavy element compounds.
КЉУЧНЕ РЕЧИ / KEYWORDS:
DFT, Relativistics, ZORA, [Rh(eddadp)]-, [Co(eddadp)]-
ЛИТЕРАТУРА / REFERENCES:
Pyper, N. C., et al., Relativity and The Periodic Table, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378 (2020) no. 2180, 20190305.
J. Autschbach, Perspective: Relativistic effect, The Journal of Chemical Physics, 136 (2012), 150902
P. Schwerdtfeger, Relativistic Effect in Properties of Gold, Heteroatom Chemistry 13 (2002) 6 578-584
Calvo, F. A., Pahl, E., Wormit, M., Schwerdtfeger, P. (2013). Evidence For Low-temperature Melting Of Mercury Owing To Relativity. Angewante Chemie International Edition, 52 (2013), 7583-7585.
Ahuja, R., Blomqvist, A., Larsson, P., Pyykkö, P., Zaleski-Ejgierd, P., Relativity and The Lead-acid Battery. Physical Review Letters, 106 (2011) 018301.
Demissie, T. B. (2017). Relativistic Effects On the Nmr Parameters Of Si, Ge, Sn, And Pb Alkynyl Compounds: Scalar Versus Spin-orbit Effects. The Journal of Chemical Physics, 147 (2017) 174301.
G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, Chemistry with ADF, Journal of Computational chemistry 22 (2001) 931–967
E. van Lenthe, E.-J. J. Baerends, J. G. Snijders, The zero-order regular approximation for relativistic effects: The effect of spin-orbit coupling in closed shell molecules, Journal of Chemical Physics 105 (1996), 6505-6516.
P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, The Journal of Physical Chemistry 98 (1994) 11623–11627
T. Mizuta, T. Yamamoto, N. Shibata, K. Miyoshi, The molecular structure of the trans(O5) isomer of (ethylenediamine-N,N′-diacetato-N,N′-di-3-propionato)cobaltate(III), trans(O5)-[Co(eddda)]−determined by x-ray analysis and its structural comparison with some metal(III) complexes of related ligands. Inorganica Chimica Acta 169 (1990) 257;
D.J. Radanovic, M.I. Djuran, K.D. Gailey, B.E. Douglas, Circular Dichroism And Electronic Absorption Of Rhodium(Iii) Edta-Type Complexes: Ethylenediamine-N, N’-Diacetato-N, N’-Di-3-Propionatorhodate(Iii) And (S,S)-Ethylenediamine-N, N’-Disuccinatorhodate(III) Ions, Journal of Coordination Chemistry, 10 (1980) 115–123.
M.S. Jeremić, M.D. Radovanović, F.W. Heinemann, M.M. Vasojević, Z.D. Matović, Structural and theoretical investigations of the Rh(III) and Co(III) complexes containing symmetrical edta-type ligands with mixed carboxylate and diamine rings: Quantum-mechanical/NBO insight into stability of geometrical isomers, Polyhedron. 169 (2019) 89–101