High-throughput screening of novel hydrogen storage materials – ML approach

2nd International Conference on Chemo and Bioinformatics ICCBIKG 2023 (580-583)

АУТОР(И) / AUTHOR(S): K.Batalović, J.Radaković, B.Paskaš Mamula, M.Medić Ilić, B.Kuzmanović

Е-АДРЕСА / E-MAIL: kciric@vin.bg.ac.rs

Download Full Pdf  

DOI: 10.46793/ICCBI23.580B

САЖЕТАК / ABSTRACT:

Hydride formation in metals is a widely studied and applied phenomenon necessary to transition to clean energy solutions and various technological applications. We focus on three perspective applications of these materials, namely near-ambient hydrogen storage, hydrogen storage compressor materials, and alkali metal conversion electrodes, to demonstrate acceleration in the research achieved by utilizing a data-driven approach. Graph neural network was developed using a transfer learning approach from the MEGNet model and data related to the thermodynamics of hydride formation obtained in experimental work. Based on the crystal structure and composition as input features, we apply the MetalHydrideEnth model developed in our previous work to predict hydride formation enthalpy in intermetallic compounds. In this work, we focus on demonstrating how this approach, combined with available crystal information obtained from density functional theory calculations, can be applied for fast and extensive searches of novel metal hydride materials, having in mind the above-listed applications.

КЉУЧНЕ РЕЧИ / KEYWORDS:

metal hydride, GNN, hydrogen storage, DFT, conversion-type anode

ЛИТЕРАТУРА / REFERENCES:

    •  V. Yartys, M. Zhu, Recent advances in hydrogen storage materials, J. Alloys Compds., 927 (2022) 166892.
    • A. El Kharbachi, E. M. Dematteis, K. Shinzato, S. C. Stevenson, L. J. Bannenberg, M. Heere, C. Zlotea, P. Á. Szilágyi, J.-P. Bonnet, W. Grochala, D. H. Gregory, T. Ichikawa, M. Baricco, B. C. Hauback, Metal Hydrides and Related Materials. Energy Carriers for Novel Hydrogen and Electrochemical Storage, J. Phys. Chem. C, 124 (2020) 7599–7607.
    • G.R. Schleder, A.C.M.Padilha, C.M.Acosta, M.Costa, A.Fazzio, From DFT to machine learning: recent approaches to materials science–a review, J. Phys.: Mater., 2 (2019) 032001.
    • C.Chen,Y.Zuo,W. Ye,X.Li,Z.Deng,S. Ping Ong, A Critical Review of Machine Learning of Energy Materials, Adv. Energy Mater., 10 (2020) 1903242.
    • C. Chen, W. Ye, Y. Zuo, C. Zheng, S. Ping Ong, Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals, Chem. Mater, 31 (2019) 3564–3572.
    • K. Batalović, J. Radaković, B. Kuzmanović, M. Medić Ilić, B. Paskaš Mamula, “MetalHydrideEnth”, Mendeley Data, V1 (2022), doi: 10.17632/4tpmdzxtf6.1.
    • K. Batalović, J. Radaković, B. Paskaš Mamula, B. Kuzmanović, M. Medić Ilić, Predicting the Heat of Hydride Formation by Graph Neural Network – Exploring the Structure–Property Relation for Metal Hydrides, Adv. Theory Simul., 5 (2022) 2200293.
    • A. Jain, S.P. Ong, G. Hautier, W. Chen, W. Davidson Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Materials, 1 (2013) 011002.
    • S. Ping Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. Chevrier, K. A. Persson, G. Ceder, Python Materials Genomics (pymatgen) : A Robust, Open-Source Python Library for Materials Analysis, Comput. Mater. Sci., 68 (2013) 314–319.
    • K. Batalović, J. Radaković, B. Paskaš Mamula, B. Kuzmanović, M. Medić Ilić, Machine learning-based high-throughput screening of Mg-containing alloys for hydrogen storage and energy conversion applications, J. Energy Storage, 68 (2023) 107720.
    • Y. Oumellal, A. Rougier, G. A. Nazri, J-M. Tarascon, L. Aymard, Metal hydrides for lithium-ion batteries, Nat. Mater., 7, 916-921, 2008.