Флексибилност електроенергетског система / Зборник CIGRE (2023). (стр 1839-1850)
АУТОР(И) / AUTHOR(S): Aleksandar Gajić, Vladimir Stevanović
Е-АДРЕСА / E-MAIL: agajicprof@gmail.com
DownloadFull Pdf
DOI: 10.46793/CIGRE36.1839G
САЖЕТАК / ABSTRACT:
Akumulacija energije u elektroenergetskom sistemu je neophodna kako bi se uskladila snaga proizvodnje sa snagom potrošnje i održala stabilnost isporuke električne energije. Neophodnost akumulacije energije je naročito izražena u elektroenergetskim sistemima sa većim udelom solarnih i vetroelektrana, čija je snaga proizvodnje uslovljena promenljivim vremenskim uslovima. Akumulacija energije omogućava brzu primarnu i sekundarnu regulaciju generisane snage, dok u slučaju većih akumulacija učestvuje i u tercijalnoj regulaciji. U potpunosti razvijena tehnologija sa velikim eksploatacionim iskustvom za akumulaciju energije u elektroenergetskom sistemu, kako u svetu tako i u Srbiji, jeste primena reverzibilnih hidroelektrana. U radu se analiziraju dosadašnja iskustva u primeni reverzibilnih hidroelektrana, kao i neka novija tehnička rešenja u cilju maksimalnog iskorišćenja prirodnih potencijala za akumulaciju hidroenergije. Pored toga, s obzirom na to da je Srbija jedna od zemalja u svetu sa velikim udelom proizvodnje električne energije iz uglja, razmotrena su i neka od savremenih rešenja za akumulaciju energije u okviru termoelektrana.
КЉУЧНЕ РЕЧИ / KEYWORDS:
elektroenergetski sistem, regulacija snage, akumulacija energije, reverzibilne hidroelektrane, solarne elektrane, vetroelektrane, termoelektrane
ЛИТЕРАТУРА / REFERENCES:
- A. Gajic, S. Pejovic, B. Karney, Reverzibilne hidroelektrane smanjuju troškove proizvodnje i obezbeđuju čistu energiju vetra i sunca, TERMOTEHNIKA, vol. 43, no. 1-4, 2017, pp. 39-47
H.L. Ferreira, R. Garde, G. Fulli, W. Kling and J.P. Lopes, Characterisation of electrical energy storage technologies. Energy, vol. 53, 2013, pp. 288-298. doi: 10.1016/j.energy.2013.02.037
Pravila o radu prenosnog sistema, Elektromreža Srbije, Beograd, 2020.
https://ems.rs/pravila-o-radu-prenosnog-sistema-2/Establishing a network code on requirements for grid connection of generators, COMMISSION REGULATION (EU) 2016/631 of 14 April 2016. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:JOL_2016_112_R_0001#d1e1086-1-1
UCTE. Continental Europe operation handbook – Load-frequency control and performance,
https://docstore.entsoe.eu/fileadmin/user_upload/_library/publications/entsoe/Operation_Handbook/Policy_1_final.pdfEnergy Charts, Fraunhofel Institute, Germany, https://energy-charts.info/?l=en&c=DE
Wind Energy Statistics, Renewable UK,
https://www.renewableuk.com/page/UKWEDExplained/Statistics-Explained.htmWind energy in Europe, 2021 Statistics and the outlook for 2022-2026, Wind Europe, 2022,
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiU7uOtvYH-
AhUZS_EDHbSuDGs4ChAWegQIBhAB&url=https%3A%2F%2Fproceedings.windeurope.org%2Fbiplatform%2Frails%2Factive_storage%2Fblobs%2FeyJfcmFpbHMiOnsibWVzc2FnZSI6IkJBaHBBbFFEIiwiZXhwIjpudWxsLCJwdXIiOiJibG9iX2lkIn19–f507a22c9854863e01fd427239f10167d031cc66%2FWindeurope-Wind-energy-in-Europe-2021-statistics.pdf&usg=AOvVaw0hucLA_5cfr3_tgfPrARZbEnergetski bilans Republike Srbije za 2022. godinu, Ministartsvo rudarstva i energetike Republike Srbije, Beograd, https://www.mre.gov.rs/dokumenta/strateska-dokumenta/energetski-bilans-republike-srbije-za-2022-godinu
National Renewable Energy Action Plan (NREAP) Implementation Report for 2020, Ministartsvo rudarstva i energetike Republike Srbije, Beograd, https://www.mre.gov.rs/dokumenta/sektor-za-zelenu-energiju/izvestaji/izvestaj-o-sprovodjenju-nacionalnog-akcionog-plana-za-koriscenje-obnovljivih-izvora-energije-republike-srbije-za-2020-godinu
Williams E., Dinorwig, the Electric Mountain, Public Relations, The National Grid Company plc, National Grid Hiuse, Summer Street, London SEI 9JU, Registered in England and Wales No2366877
O. Garbrecht, M. Bieber, R. Kneer, Increasing fossil power plant flexibility by integrating molten-salt thermal storage. Energy 118 (2017) pp. 876-883
M. Trojan, D. Taler, P. Dzierwa, J. Taler, K. Kaczmarski, J. Wrona., The use of pressure hot water storage tanks to improve the energy flexibility of the steam power unit, Energy 173 (2019) pp. 926-936
M. Richter, G. Oeljeklaus, K. Görner, Improving the load flexibility of coal-fired power plants by the integration of a thermal energy storage, Applied Energy 236 (2019) pp. 607-621
G. Beckman, P. V. Gilli, Thermal energy storage: Basics-design-applications to power generation and heat supply, Springer-Verlag, Wien NewYork (1984)
P.V. Gilli, K. Fritz, Nuclear power plants with integrated steam accumulators for load peaking, IAEA Symposium on Economic Integration of Nuclear Power Stations in Electric Power Systems, Vienna, WB-KE-2015 (1970)
R. E. Lain III, Modeling and integration of steam accumulators in nuclear steam supply systems, MS Thesis, University of Texas at Austin (2016)
- V. Stevanovic, M.M. Petrovic, S. Milivojevic, M. Ilic, Upgrade of the thermal power plant flexibility by the steam accumulator, Energy Conversion and Management, Vol. 223, (2020), article 113271.
- A Gajic, V Stevanovic, S Pejovic, B Karney, Hydro storage reduces electricity costs and keep wind and solar unpolluted, 29th IAHR Symposium on Hydraulic Machinery and Systems, Kyoto, Japan (2018), article 461