FREE SH GROUPS IN MICROBIAL RESPONSE TO ANTIBIOTICS

17th International Conference on Fundamental and Applied Aspects of Physical Chemistry (Proceedings, Volume II) (2024) [S-04-P, pp. 727-730]   

AUTHOR(S) / АУТОР(И): Kristina Joksimović , Jelena Avdalović , Aleksandra Nikolić-Kokić , Dara Jovanović , Srđan Miletić , Kristina Kasalica and Snežana Spasić 

Download Full Pdf 

DOI: 10.46793/Phys.Chem24II.727J

ABSTRACT / САЖЕТАК:

Glutathione (GSH) is the primary molecule responsible for maintaining homeostasis. It is a tripeptide made up of cysteine, glutamate, and glycine. The primary function in redox homeostasis is carried out by the unbound sulfhydryl (SH) group from glutathione (GSH). Microorganisms have swift responses to alterations in their environment, and the use of antibiotics can stimulate the development of bacterial resistance. Transcription factors such as SoxRS, OxyR, NFκB, AP-1, Nrf-2, and P53 are sensitive to variations in the redox state of cells, which is influenced by redox-reactive groups like thiols. Our study monitored alterations in the levels of free sulfhydryl (-SH) groups in E. coli and S. aureus following their exposure to streptomycin and amoxicillin. An observation was made that streptomycin reduces the concentration of free sulfhydryl (SH) groups in both E. coli and S. aureus. Conversely, amoxicillin enhances the concentration of free SH groups in E. coli, but further reduces the concentration of these groups in S. aureus.

There is a significant difference between Gram-positive and Gram-negative bacteria in this regard. These findings improve comprehension of the function of -SH groups in rectifying redox state imbalance in bacteria induced by antibiotics.

KEYWORDS / КЉУЧНЕ РЕЧИ:

ACKNOWLEDGEMENT / ПРОЈЕКАТ:

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (grant no 451-03-66/2024-03/200026).

REFERENCES / ЛИТЕРАТУРА:

  • S. Gurung, O. V. Timmermand, D. Perocheau, A. L. Gil-Martinez, M. Minnion, L. Touramanidou, S. Fang, M. Messina, Y. Khalil, J. Spiewak, A. R. Barber, R. S. Edwards, P. L. Pinto, P. F. Finn, A. Cavedon, S. Siddiqui, L. Rice, P. G. V. Martini, D. Ridout, W. Heywood, I. Hargreaves, S. Heales, P. B. Mills, S. N. Waddington, P. Gissen, S. Eaton, M. Ryten, M. Feelisch, Frassetto, T. H. Witney, J. Baruteau. Science Translational Medicine, 16 (2024).
  • J. W. K. Ku, Y.-H. Gan;. Redox Biology, 44 (2021) 102012.
  • D. Díaz-García, P. R. Ardiles, M. Díaz-Sánchez, I. Mena-Palomo, I. del Hierro, S. Prashar, A. Rodríguez-Diéguez, P. L. Páez, S. Gómez-Ruiz;. Journal of Inorganic Biochemistry, 203 (2020)
  • X. Ren, L. Zou, J. Lu, A. Holmgren; Selenocysteine in mammalian thioredoxin reductase and application of ebselen as a therapeutic. Free Radical Biology and Medicine ,127 (2018) 238–247.
  • A. M. Reyes, B. Pedre, M. I. De Armas, M.-A. Tossounian, R. Radi, J. Messens, M. Trujillo; Antioxidants & Redox Signaling, 28 (2018) 487–504.
  • P. H. W. Butterworth, H. Baum, J. W. Porter, Archives of Biochemistry and Biophysics, 118 (1967) 716–723.
  • A. Crisafulli, F. Melis, F. Tocco, P. Laconi, C. Lap, A. Concu, Journal of Sports Medicine and Physical Fitness, 42 (2002) 409–417.
  • D. A. Butterfield, J. Kanski, Peptides, 23 (2002) 1299–1309.
  • N. J. Sucher, S. A. Lipton, Journal of Neuroscience Research, 30 (1991) 582–591.
  • K. Ulrich, U. Jakob, Free Radical Biology and Medicine, 140 (2019) 14–27.
  • S. Vesce, M. B. Jekabsons, L. I. Johnson-Cadwell, D. G. Nicholls, Journal of Biological Chemistry, 280 (2005) 38720–38728.