The role of uremic toxins on the development of cardiovascular damages

7th International Congress of Cardionephrology KARNEF (2025) [pp. 27-34]

AUTHOR(S) / АУТОР(И): Dejan Pilčević , Violeta Rabrenović, Milica Petrović, Neven Vavić, Nemanja Đenić

Download Full Pdf   

DOI: 10.46793/KARNEF25.027P

ABSTRACT / САЖЕТАК:

Uvod: Uremijski toksini (UTs) igraju važnu ulogu u razvoju kardiovaskularnih bolesti (KVB) kod pacijenata sa hroničnim bolestima bubrega (HBB). Povezani su sa značajnim kardiovaskularnim morbiditetom i mortalitetom ovih pacijenata.

Pacijenti i metode: UTs se definišu kao štetni produkti koji se akumuliraju u organizmu tokom sniženja filtracione sposobnosti bubrega, dok ih zdravi bubrezi normalno izlučuju. Potiču iz endogenog metabolizma, mikrobnog metabolizma ili egzogenog unosa. Sva uremična jedinjenja imaju negativnu ulogu u biološkim funkcijama uzrokujući brojne poremećaje u različitim tkivima kod ljudi sa HBB, uključujući kardiovaskularni sistem. Literaturno se opisuje više od 140 UTs koji se promovišu tokom razvoja bubrežne disfunkcije. Biološki efekti koje prouzrokuju zavise od međusobnog odnosa sinteze, degradacije, eliminacije, intracelularne distribucije i prisustva inhibitora ili promotera delovanja toksina.

Rezultati: Brojni UTs kao što su indoksil sulfat, cijanat, modifikovani LDL, uznapredovali završni proizvodi glikozilacije, p-krezol i p-krezol sulfat, fosfati, mokraćna kiselina i asimetrični dimetilarginin doprinose razvoju ateromatoznih i neateromatoznih kardiovaskularnih oštećenja kod pacijenata sa HBB kroz različite mehanizame od kojih su najznačajniji endotelna disfunkcija i vaskularna kalcifikacija uzrokovani uglavnom oksidativnim stresom i inflamacijom.

Zaključak: Pouzdani dokazi sugerišu da su uremijski toksini ozbiljna opasnost po kardiovasku-larni sistem u HBB i kao takvi mogu predstavljati nove biomarkere i terapijske ciljeve kod ovih pacijenata

KEYWORDS / КЉУЧНЕ РЕЧИ:

uremijski toksini, kardiovaskularna oboljenja, bubrežna disfunkcija, inflamacija

REFERENCES / ЛИТЕРАТУРА:

  • Sarnak MJ, Levey AS, Schoolwerth AC et al. Kidney disease as a risk factor for development of cardiovascular disease: A statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 2003;108:2154–2169.
  • Virani SS, Alonso A, Benjamin EJ et al. Heart Disease and Stroke Statistics-2020 Update. 2020. Circulation. 2020 Mar 3;141(9):e139-e596.
  • Jankowski J, Floege J, Fliser D, Böhm M, Marx N. Cardiovascular disease in chronic kidney disease: Pathophysiological insights and therapeutic options. Circulation 2021;143:1157-1172.
  • Lv JC, Zhang LX. Prevalence and disease burden of chronic kidney disease. Ren. Fibros. Mech. Ther. 2019;1165:3-15.
  • Nlandu Y, Padden M, Seidowsky A et al. Toxines urémiques de moyen poids moléculaire: Un véritable regain d’intérêt. Néphrol. Thér. 2019;15:82-90.
  • Wojtaszek E, Oldakowska-Jedynak U, Kwiatkowska M, Glogowski T, Malyszko J. Uremic Toxins, Oxidative Stress, Atherosclerosis in Chronic Kidney Disease, and Kidney Transplan-tation. Oxid Med Cell Longev. 2021;2021:6651367. Published 2021 Feb 11.
  • Gansevoort RT, Correa-Rotter R, Hemmelgarn BR et al. Chronic kidney disease and cardiovascular risk: Epidemiology, mechanisms, and prevention. Lancet 2013;382: 339-352.
  • Drüeke TB, Massy ZA. Atherosclerosis in CKD: Differences from the general population. Nat. Rev. Nephrol. 2010,6:723-735.
  • Villain C, Metzger M, Combe C et al. Prevalence of atheromatous and non-atheromatous cardio-vascular disease by age in chronic kidney disease. Nephrol. Dial. Transplant. 2020;35:827-836.
  • Liabeuf S, Drüeke TB, Massy ZA. Protein-bound uremic toxins: New insight from clinical studies. Toxins, 2011;3:911-919.
  • Vanholder R, De Smet R, Glorieux G. Review on uremic toxins: Classification, concentration, and interindividual variability (volume 63, pg 1934, 2003). Kidney Int. 2020;98:1354.
  • Mahomed FA. (1877). On the pathology of uraemia and the socalled uraemic convulsions. BMJ;2:10-12.
  • Falconi CA, Junho CVDC, Fogaça-Ruiz et al. Uremic Toxins: An Alarming Danger Concerning the Cardiovascular System. Front Physiol. 2021 May 14;12:686249. doi: 10.3389/fphys. 2021.686249. PMID: 34054588; PMCID: PMC8160254.
  • Duranton F, Cohen G, De Smet R et al. Normal and Pathologic Concentrations of Uremic Toxins. J. Am. Soc. Nephrol. 2012;23:1258-1270.
  • Graboski AL, Redinbo MR. Gut-derived protein-bound uremic toxins. Toxins 2020;12:590.
  • Vanholder R, Baurmeister U, Brunet P et al. European Uremic Toxin Work Group. A bench to bedside view of uremic toxins. J. Am. Soc. Nephrol. 2008;19:863-870.
  • Stevens P, O’Donoghue D, de Lusignan S et al. Chronic kidney disease management in the United Kingdom: NEOERICA project results. Kidney Int. 2007;2:92-99.
  • Thompson S, James M, Wiebe N et al. Cause of Death in Patients with Reduced Kidney Function. J. Am. Soc. Nephrol. 2015;26:2504-2511.
  • Masuda C, Dohi K, Sakurai Y et al. Impact of Chronic Kidney Disease on the Presence and Severity of Aortic Stenosis in Patients at High Risk for Coronary Artery Disease. Cardiovasc. Ultrasound 2011; 9:31.
  • Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat. Immunol. 2011;12:204-212.
  • Briet M, Bozec E, Laurent S et al. Arterial stiffness and enlargement in mild-to-moderate chronic kidney disease. Kidney Int. 2006,69:350-357.
  • Katz SD, Hryniewicz K, Hriljac I et al. A. Vascular Endothelial Dysfunction and Mortality Risk in Patients With Chronic Heart Failure. Circulation 2005;111:310-314.
  • London GM, Marchais SJ, Guerin AP, Metivier F, Adda H. Arterial structure and function in end-stage renal disease. Nephrol. Dial. Transplant. 2002;17:1713-1724.
  • Schwarz U, Buzello M, Ritz E et al. Morphology of coronary atherosclerotic lesions in patients with end-stage renal failure. Nephrol. Dial. Transplant. 2000;15: 218-223.
  • Herzog CA, Asinger RW, Berger AK et al. Cardiovascular disease in chronic kidney disease. A clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2011; 80:572-586.
  • Hicks KA, Mahaffey KW, Mehran R et al. 2017 cardiovascular and stroke endpoint definitions for clinical trials. Circulation 2018; 137: 961-972.
  • Laville SM, Couturier A, Lambert O et al. Urea levels and cardiovascular disease in patients with chronic kidney disease. Nephrol. Dial. Transplant. 2022, gfac045.
  • Valdivielso JM, Rodríguez-Puyol D, Pascual J et al. Atherosclerosis in chronic kidney disease: More, less, or just different? Arterioscler. Thromb. Vasc. Biol. 2019;39:1938-1966.
  • Masson P, Webster AC, Hong M et al. Chronic kidney disease and the risk of stroke: A systematic review and meta-analysis. Nephrol. Dial. Transplant. 2015; 30:1162-1169.
  • Chen J, Mohler ER, Xie D et al. Traditional and non-traditional risk factors for incident peripheral arterial disease among patients with chronic kidney disease. Nephrol. Dial. Transplant. 2016;31: 1145-1151.
  • Wattanakit K, Folsom AR, Selvin E et al. Kidney function and risk of peripheral arterial disease: Results from the Atherosclerosis Risk in Communities (ARIC) Study. J. Am. Soc. Nephrol. 2007;18:629-636.
  • Odutayo A,Wong CX, Hsiao AJ et al. Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: Systematic review and meta-analysis. BMJ 2016;354: i4482.
  • Silverberg D, Wexler D, Blum M, Schwartz D, Iaina, A. The association between congestive heart failure and chronic renal disease. Curr. Opin. Nephrol. Hypertens. 2004;13:163-170.
  • Sarafidis PA, Loutradis C, Karpetas A et al. Ambulatory pulse wave velocity is a stronger predictor of cardiovascular events and all-cause mortality than office and ambulatory blood pressure in hemodialysis patients. Hypertension 2017;70:148-157.
  • Pannier B, Guérin AP, Marchais SJ, Safar ME, London GM. Stiffness of capacitive and conduit arteries: Prognostic significance for end-stage renal disease patients. Hypertension 2005;45:592-596.
  • London G.M. Arterial stiffness in chronic kidney disease and end-stage renal disease. Blood Purif. 2018; 45:154-158.
  • Lee SJ, Lee IK, Jeon JH. Vascular calcification—new insights into its mechanism. Int. J. Mol. Sci. 2020; 21:2685.
  • Vahed SZ, Mostafavi S, Khatibi SMH, Shoja MM, Ardalan M. Vascular calcification: An important understanding in nephrology. Vasc. Health Risk Manag. 2020;16:167.
  • Ozcan C. Conduction Intervals and Atrial Fibrillation in Chronic Kidney Disease. Am. J. Nephrol. 2021; 52:354-355.
  • Kaya B, Paydas S, Aikimbaev K et al. Prevalence of cardiac arrhythmia and risk factors in chronic kidney disease patients. Saudi J. Kidney Dis. Transplant. 2018;29:567.
  • Bonato, F.O.B.; Canziani, M.E.F. Ventricular arrhythmia in chronic kidney disease patients. Braz. J. Nephrol. 2017; 39:186-195.
  • Gremmel T, Müller M, Steiner S et al. Chronic kidney disease is associated with increased platelet activation and poor response to antiplatelet therapy. Nephrol. Dial. Transplant. 2013; 28:2116–2122.
  • Ocak G, Verduijn M, Vossen C, et al. Chronic kidney disease stages 1–3 increase the risk of venous thrombosis. J. Thromb. Haemost. 2010;8:2428-2435.
  • Watanabe H, Miyamoto Y, Honda D,et al. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Kidney Int. 2013;83: 582-592.
  • Holmar J, De La Puente-Secades S, Floege J et al. Uremic Toxins Affecting Cardiovascular Calcification: A Systematic Review. Cells 2020;9:2428.
  • Jerotic D, Suvakov S, Matic M et al. GSTM1 Modulates Expression of Endothelial Adhesion Molecules in Uremic Milieu. Oxidative Med. Cell. Longev. 2021, 2021, 6678924.
  • Saum K, Campos B, Celdran-Bonafonte D et al. Uremic Advanced Glycation End Products and Protein-Bound Solutes Induce Endothelial Dysfunction through Suppression of Krüppel Like Factor 2. J. Am. Heart Assoc. 2018, 7, e007566.
  • García-Jérez A, Luengo A, Carracedo J et al. Effect of uraemia on endothelial cell damage is mediated by the integrin linked kinase pathway. J. Physiol. 2014, 593, 601–618.
  • LimYJ, Sidor NA, Tonial NC, Che A, Urquhart BL. Uremic Toxins in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Mechanisms and Therapeutic Targets. Toxins 2021;13:142.
  • Muteliefu G, Enomoto A, Jiang P, Takahashi M, Niwa T. Indoxyl sulphate induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells. Nephrol. Dial. Transplant. 2009;24:2051-2058.
  • Dou L,Sallée M, Cerini C et al. The cardiovascular effect of the uremic solute indole-3 acetic acid. J. Am. Soc. Nephrol. 2015, 26, 876–887.
  • Watanabe H, Miyamoto Y, Enoki Y et al. p-Cresyl sulfate, a uremic toxin, causes vascular endothelial and smooth muscle cell damages by inducing oxidative stress. Pharmacol Res Perspect. 2015;3(1):e00092. doi:10.1002/prp2.92
  • Di Marco GS, Hausberg M, Hillebrand U et al. Increased inorganic phosphate induces human endothelial cell apoptosis in vitro. Am. J. Physiol. Ren. Physiol. 2008, 294, F1381–F1387