37. саветовање CIGRE Србија (2025) СИГУРНОСТ, СТАБИЛНОСТ, ПОУЗДАНОСТ И RESILIENCE ЕЛЕКТРОЕНЕРГЕТСКОГ СИСТЕМА МУЛТИСЕКТОРСКО ПОВЕЗИВАЊЕ У ЕНЕРГЕТИЦИ И ПРИВРЕДИ – A2.07
АУТОР(И) / AUTHOR(S): Uroš Radoman, Petar Nikolić, Filip Kilibarda, Vladimir Polužanski, Nenad Kartalović, Nikola Miladinović, Valentina Vasović, Branko Pejović, Aleksandar Žigić, Jelena Lukić
DOI: 10.46793/CIGRE37.A2.07
САЖЕТАК / ABSTRACT:
This paper presents the concept of a Digital Twin (DT) for an oil-immersed power transformer (OIPT), which serves as the foundation for developing tools for monitoring, diagnostics, and exploitation optimization, based on the principles of the Fourth Industrial Revolution. The proposed concept emphasizes system modularity, achieved by the use of microservices. Microservices enable the gradual expansion of the system and the application of both simple and complex models under realistic conditions. The practical application of the concept is illustrated through the development of a demonstration DT system for monitoring key physical processes such as temperature change, cooling efficiency, and insulation thermal aging. The demonstration system simulates real-time operation using archived operational data. It integrates physics-based and artificial intelligence (AI) models, along with visualization modules and service functions. The presented concept highlights the potential of DT technology to support decision-making, predictive maintenance optimization, and allows further development and integration with existing power system infrastructures.
КЉУЧНЕ РЕЧИ / KEYWORDS:
Liquid-immersed power transformers, Digital twin, Industry 4.0, Monitoring systems, Insulation aging, Heat exchanger fouling, Microservices, Artificial intelligence, Predictive maintenance
ПРОЈЕКАТ / ACKNOWLEDGEMENT:
Ovaj rad je podržalo Ministarstvo nauke, tehnološkog razvoja i inovacija Republike Srbije kroz Ugovor o realizaciji i finansiranju naučnoistraživačkog rada NIO u 2024. godini (broj ugovora 451-03-136/2025-03).
ЛИТЕРАТУРА / REFERENCES:
- U. Radoman, F. Kilibarda, N. Kartalović, N. Miladinović, V. Polužanski, V. Vasović, B. Pejović, A. Žigić, and J. Lukić, “Digitalni blizanac (Digital Twin) energetskih uljnih transformatora – koncept i primena,” Zbornik radova, Elektrotehnički institut „Nikola Tesla“, vol. 34, pp. 61-82, 2024, doi: 10.5937/zeint34-54654
- Congress.gov. „H.R.6 – 110th Congress (2007-2008): Energy Independence and Security Act of 2007.“ December 19, 2007. https://www.congress.gov/bill/110th-congress/house-bill/6.
- P. Picher, A. Alber, S.Zhao, Z. Wang, S. Chakraborty, S. Voss, M. Ryadi, T. McGrail, and N. S. Momtazi, „Transformer digital twin – concept and future perspectives”, in Colloquium A2 – Split 2023, MC&NT_01.
- M. Grieves, Virtually Perfect: Driving Innovative and Lean Products Through Product Lifecycle Management. 2011.
- ISO/IEC, International Standard, ISO/IEC 30173, Digital twin – Concepts and terminology. 2023.
- IEC, International Standard, IEC 60076-7 Power transformers – Part 7: Loading guide for mineral-oil-immersed power transformers. 2018.
- U. Radoman, Z. Radaković, A. Jovanović, P. Nikolić „Metoda za procenu opteretljivosti transformatora usled zaprljanja shell-and-tube kompaktnih hladnjaka,“ in 33 savetovanje Cigre Srbija, Zlatibor, 2017.
- V. Vasovic, J. Lukic, D. Mihajlovic, B. Pejovic, M. Milovanovic, U. Radoman and Z. Radakovic, „Aging of Transformer Insulation of Experimental Transformers and Laboratory Models with Different Moisture Contents: Part II – Moisture Distribution and Aging Kinetics,“ IEEE Transactions on Dielectrics and Electrical Insulation, vol. 26, no. 6, pp. 1847-1852, 2019.
- R. Rodger. The tao of microservices. Simon and Schuster, 2017.
- S. Newman. Building microservices: designing fine-grained systems. O’Reilly Media, Inc., 2021.
- C. Larman. Agile and iterative development: a manager’s guide. Addison-Wesley Professional, 2004.
- Chung, Junyoung, et al. „Empirical evaluation of gated recurrent neural networks on sequence modeling.“ arXiv preprint arXiv:1412.3555 (2014).
- S. Hochreiter, and J. Schmidhuber. „Long short-term memory.“ Neural computation, vol. 9, issue 8, pp. 1735-1780, 1997.
- D. L. Marino, K. Amarasinghe and M. Manic, „Building energy load forecasting using Deep Neural Networks,“ IECON 2016 – 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 2016, pp. 7046-7051, doi: 10.1109/IECON.2016.7793413.
- A. Vatsa, A.S. Hati, P. Kumar et al. „Residual LSTM-based short duration forecasting of polarization current for effective assessment of transformers insulation.“ Sci Rep vol 14, pp. 1369, 2024. doi: 10.1038/s41598-023-50641-z
- A. Vaswani, et al. „Attention is all you need.“ Advances in neural information processing systems, vol 30, 2017. doi: 10.48550/arXiv.1706.03762
- S. Kiranyaz, et al. „1D convolutional neural networks and applications: A survey.“ Mechanical systems and signal processing, vol. 151, pp. 107398, 2021, doi: 10.1016/j.ymssp.2020.107398