Bioinformatics tools in molecular oncology

3rd International Conference on Chemo and BioInformatics, Kragujevac, September 25-26. 2025. (pp. 323-326) 

 

АУТОР(И) / AUTHOR(S): Jasmina M. Obradovic, Branko J. Arsic

 

Download Full Pdf   

DOI:  10.46793/ICCBIKG25.323O

САЖЕТАК / ABSTRACT:

Bioinformatics and molecular oncology are rapidly evolving scientific field, so their integration has become fundamental, offering powerful capabilities for mutation detection, driver gene identification, prognostic analysis and personalized treatment strategies. In this brief descriptive review, several key bioinformatic tools are presented, within the constraints of the paper’s format, highlighting their advantages and potential limitations. These tools and wide array of publically available databases and platforms support research in this area. However, challenges such as data quality, computational infrastructure, adequate expertise, and the need for both experimental and clinical validation must be addressed in the future studies. Nevertheless, the continuous advancements of bioinformatics tools is expected to improve the concept of personalized medicine and potentially lead to improved patient outcomes.

КЉУЧНЕ РЕЧИ / KEYWORDS:

bioinformatic tools, molecular oncology, multiomics

ПРОЈЕКАТ / ACKNOWLEDGEMENT:

This work is funded by the Ministry of Science, Technological Development and Innovation, Republic of Serbia, Agreements No. 451-03-136/2025-03/200378 and 451-03- 137/2025-03/200122.

ЛИТЕРАТУРА / REFERENCES:

  • C. Chen, J. Wang, D. Pan, et al., Applications of multi-omics analysis in human diseases. MedComm, 4(4), (2023) e315.
  • D. Rosati, M. Palmieri, G. Brunelli, et al., Differential Gene Expression Analysis Pipelines and Bioinformatic Tools for the Identification of Specific Biomarkers: A Review, Computational and Structural Biotechnology Journal 23 (2024) 1154-1168.
  • Y. Zhou, N. Kathiresan, Z. Yu, et al., A high-performance computational workflow to accelerate GATK SNP detection across a 25-genome dataset. BMC Biol 22 (2024) 13.
  • D. Benjamin, T. Sato, K. Cibulskis, et al., Calling somatic SNVs and indels with Mutect2. BioRxiv, (2019) 861054.
  • Z. Chen, Y. Yuan, X. Chen, et al., Systematic comparison of somatic variant calling performance among different sequencing depth and mutation frequency. Scientific reports, 10(1), (2020) 3501.
  • D. Li, M.S. Zand, T.D. Dye, et al.,. An evaluation of RNA-seq differential analysis methods. PloS one, 17(9), (2022) e0264246.
  • P. Brlek, A. Kafka, A. Bukovac, et al., Integrative cBioPortal Analysis Revealed Molecular Mechanisms That Regulate EGFR-PI3KAKT-mTOR Pathway in Diffuse Gliomas of the Brain, Cancers 13, 13 (2021) 3247.
  • J. Gao, B.A. Aksoy, U. Dogrusoz,G. et al., Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal, 6 (2013) 1.
  • D. Chakravarty, J. Gao, S. M. Phillips, et al., OncoKB: A Precision Oncology Knowledge Base, JCO Precision Oncology 2017 (2017): PO.17.00011.
  • G. Perez, G.P. Barber, A. Benet-Pages, et al. The UCSC Genome Browser database: 2025 update. Nucleic acids research, 53(D1), (2025) D1243–D1249.
  • Cancer Genome Atlas Research Network, J.N. Weinstein, E.A. Collisson, G.B. Mills, K.R. Shaw, B.A. Ozenberger, K.Ellrott, I. Shmulevich, C. Sander, J.M. Stuart. The Cancer Genome Atlas Pan-Cancer analysis project. Nature genetics, 45(10), (2013) 1113–1120.
  • P. Chalise, D. Kwon, B.L. Fridley, Q. Mo.,. Statistical methods for integrative clustering of multi-omics data. In Statistical Genomics (pp. 73-93). New York, NY: Springer US. (2023)
  • T. R. Ernst, J.D. Blischak, , P. Nordlund, et al. OmicNavigator: open-source software for the exploration, visualization, and archival of omic studies. BMC Bioinformatics, 25 (2024) 162.
  • T. Wolde, V. Bhardwaj, V. Pandey., Current Bioinformatics Tools in Precision Oncology. MedComm, 6(7) (2025) e70243.
  • D. Tamborero, N. Lopez-Bigas, A. Gonzalez-Perez et al., Oncodrive-CIS: a method to reveal likely driver genes based on the impact of their copy number changes on expression. PLoS One, 8(2), (2013) e55489.
  • W. C. Cheng, I.F. Chung, C.Y. Chen, et al., DriverDB: an exome sequencing database for cancer driver gene identification. Nucleic acids research, 42(D1), (2014) D1048-D1054.
  • Z. Tang, C. Li, B. Kang, et al., GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic acids research, 45(W1), (2017) W98-W102.
  • B. Jia, X. Zhao, Y. Wang, et al., Prognostic roles of MAGE family members in breast cancer based on KM-Plotter Data. Oncology letters, 18(4), (2019) 3501-3516.
  • R. Aguirre-Gamboa, H. Gomez-Rueda, E. Martínez-Ledesma, et al., SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PloS one, 8(9), (2013) e74250.
  • C. Knox, M. Wilson, C.M. Klinger et al., DrugBank 6.0: the DrugBank knowledgebase for 2024. Nucleic acids research, 52(D1), (2024)D1265-D1275.
  • A. P. Davis, T.C. Wiegers, D. Sciaky, et al., Comparative toxicogenomics database’s 20th anniversary: update 2025. Nucleic acids research, 53(D1), (2025) D1328-D1334.
  • B. Glass, M.E. Vandenberghe, S.T. Chavali, et al. Deployment of a Machine Learning Algorithm in a Real-World Cohort for Quality Control Monitoring of Human Epidermal Growth Factor-2–Stained Clinical Specimens in Breast Cancer. Arch Pathol Lab Med; 149 (8) (2025) 751–760.