Chemia Naissensis Volume 8, No.1 (2025) (стр. 52-72)
АУТОР(И) / AUTHOR(S): Tatjana Djekić
and Aleksandar Valjarević
Download Full Pdf 
DOI: https://doi.org/10.46793/ChemN8.1.52DJ
САЖЕТАК / ABSTRACT:
Urbanization and industrialization have significantly transformed the hydrological systems of southern Serbia, especially in the Nišava and South Morava basins and the city of Niš. Over the past decades, rapid urban growth and industrial activity have altered river morphology, reduced the permanence of tributaries, and reshaped drainage networks. Using GIS and Remote Sensing methods, including high-resolution DEMs, census data, and cartographic archives, this study analyzes urban–river interactions from 1983 to 2023, with projections to 2050.Results show that Niš, strategically located along the Nišava and South Morava corridors, has experienced substantial urban expansion, leading to increased surface runoff, erosion risks, and degradation of riparian ecosystems. The Nišava River has undergone fragmentation of its natural dendritic system, while the South Morava has become a central axis of metropolitan and industrial development. Projections to 2050 highlight intensified risks of floodplain encroachment, declining groundwater recharge, and further deterioration of water quality. The findings emphasize the urgent need for integrated basin management and sustainable urban planning in Niš and its surrounding river valleys. Balancing economic growth with ecological resilience is essential to preserve hydrological stability and ensure long-term sustainability in the region.
КЉУЧНЕ РЕЧИ / KEYWORDS:
South Morava River, Nišava River, Niš, Urbanization, GIS analysis, Pollution
ПРОЈЕКАТ/ ACKNOWLEDGEMENT:
The study was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract number 451-03-137/2025-03/200091).
ЛИТЕРАТУРА / REFERENCES:
- Andersen, L. M., Carstensen, J., Conley, D. J., & Hasler, B. (2021). Urban and agricultural pressures on aquatic ecosystems in Europe: Increasing nutrient loads and decreasing resilience. Ambio, 50(2), 273–287. https://doi.org/10.1007/s13280-020-01337-2
- Badach, J., Voordeckers, D., Nyka, L., & Van Acker, M. (2020). A framework for air quality management zones – useful GIS-based tool for urban planning: Case studies in Antwerp and Gdańsk. Building and Environment, 174, 106743. https://doi.org/10.1016/j.buildenv.2020.106743
- Baykal, T. M., Colak, H. E., & Kılınc, C. (2022). Forecasting future climate boundary maps (2021– 2060) using exponential smoothing method and GIS. Sci Total Environ, 848, 157633. https://doi.org/10.1016/j.scitotenv.2022.157633
- Chen, J., & Tang, X. (2023). Towards sustainable cities: Studying evaluation index of water environment carrying capacity. Water Resour Manage, 37, 5919–5938. https://doi.org/10.1007/s11269-023-03635-5
- Dimić, V., Milošević, M., Milošević, D., & Stević, D. (2018). Adjustable model of renewable energy projects for sustainable development: A case study of the Nišava District in Serbia. Sustainability, 10(3), 775. https://doi.org/10.3390/su10030775
- Du, Y., Cai, W., Xu, Y., Wang, Y., & Zhang, X. (2019). Urban expansion and its impact on surface runoff in the Yangtze River Delta. Land Use Policy, 86, 366–377. https://doi.org/10.1016/j.landusepol.2019.05.010
- Durlević, U., Valjarević, A., Novković, I., Vujović, F., Josifov, N., Krušić, J., & Ivanović, M. (2024). Universal snow avalanche modeling index based on SAFI–Flow-R approach in poorly-gauged regions. ISPRS Int J Geo-Inf, 13(9), 315. https://doi.org/10.3390/ijgi13090315
- Fourqurean, J. W., & Robblee, M. B. (1999). Florida Bay: A history of recent ecological changes. Estuaries, 22, 345–357. https://doi.org/10.2307/1353203.
- Grizzetti, B., Pistocchi, A., Liquete, C., & others. (2017). Human pressures and ecological status of European rivers. Sci Rep, 7, 205. https://doi.org/10.1038/s41598-017-00324-3.
- Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., & Zarfl, C. (2019). Mapping the world’s free-flowing rivers. Nature, 569(7755), 215–221. https://doi.org/10.1038/s41586-019-1111-9
- Ilies, G., Ilies, M., Hotea, M., Bumbak, S. V., Hodor, N., Ilies, D. C., & Vasić, P. (2022). Integrating forest windthrow assessment data in the process of windscape reconstruction: Case of the extratropical storms downscaled for the Gutai Mountains (Romania). Front Environ Sci, 10, 926430. https://doi.org/10.3389/fenvs.2022.926430
- Menković, L., Košćal, M., Milivojević, M., & Đokić, M. (2018). Morphostructure relations on the territory of the Republic of Serbia. Glasnik Srpskog geografskog društva, 98(2), 1–28. https://doi.org/10.2298/GSGD1802001M
- Okabe, A., Satoh, T., & Sugihara, K. (2009). A kernel density estimation method for networks, its computational method and a GIS‐based tool. Int J Geogr Inf Sci, 23(1), 7–32. https://doi.org/10.1080/13658810802475491
- Redman, C., Grove, J., & Kuby, L. (2004). Integrating social science into the Long-Term Ecological Research (LTER) network: Social dimensions of ecological change and ecological dimensions of social change. Ecosystems, 7, 161–171. https://doi.org/10.1007/s10021-003-0215-z
- Shen, J., & Wang, Y. (2023). An improved method for the identification and setting of ecological corridors in urbanized areas. Urban Ecosyst, 26, 141–160. https://doi.org/10.1007/s11252-022-01298-5
- Stamenković, S. M., Ristić, S. S., Djekic, T. L., Mitrovic, T. U., & Baošić, R. (2013). Air quality indication in Blace (Southeastern Serbia) using lichens as bioindicators. Arch Biol Sci, 65(3), 893– 897. https://doi.org/10.2298/ABS1303893S
- Takić, L., Mladenović-Ranisavljević, I., Vasović, D., & Đorđević, L. (2017). The assessment of the Danube River water pollution in Serbia. Water Air Soil Pollut, 228(10), 380. https://doi.org/10.1007/s11270-017-3551-x
- Tomsett, C., & Leyland, J. (2019). Remote sensing of river corridors: A review of current trends and future directions. River Res Appl, 35, 779–803. https://doi.org/10.1002/rra.3479
- Urošev, M., Milanović Pešić, A., Kovačević–Majkić, J., & Štrbac, D. (2022). Hydrological characteristics of Serbia. In Manić, E., Nikitović, V., & Djurović, P. (Eds.), The geography of Serbia (pp. 145–164). Springer. https://doi.org/10.1007/978-3-030-74701-5_6
- Valjarević, A. (2025b). Ecological impact of oil fields on Venezuela’s river systems: Water stress and environmental challenges. J South Am Earth Sci, 105675. https://doi.org/10.1016/j.jsames.2025.105675.
- Valjarević, A. (2024). GIS-based methods for identifying river networks types and changing river basins. Water Resour Manage, 38, 5323–5341. https://doi.org/10.1007/s11269-024-03916-7
- Valjarević, A., Filipović, D., & Milanović, M. (2020b). New updated world maps of sea-surface salinity. Pure Appl Geophys, 177, 2977–2992. https://doi.org/10.1007/s00024-019-02404-z
- Valjarević, A., Filipović, D., Valjarević, D., et al. (2020a). GIS and remote sensing techniques for the estimation of dew volume in the Republic of Serbia. Meteorol Appl, 27, e1930. https://doi.org/10.1002/met.1930
- Valjarević, A., Morar, C., Brasanac-Bosanac, L., Cirkovic-Mitrovic, T., Djekic, T., Mihajlović, M., & Kaplan, G. (2025c). Sustainable land use in Moldova: GIS & remote sensing of forests and crops. Land Use Policy, 152, 107515. https://doi.org/10.1016/j.landusepol.2025.107515
- Valjarević, A., Šiljeg, A., Šiljeg, S., Vujović, F., & Sahay, A. (2025a). GIS-based water stress analysis in North African drylands. J Arid Environ, 230, 105427. https://doi.org/10.1016/j.jaridenv.2025.105427
- Valjarević, A. (2025d). GIS and remote sensing methods in predicting the dissipation time of rural settlements under the influence of climate change in the Republic of Serbia. J Urban Manag, 14(2), 500–511. https://doi.org/10.1016/j.jum.2024.12.002.
- Yu, Z., Lu, M., Xu, Y., Wang, Q., Lin, Z., & Luo, S. (2023). Network structure and stability of the river connectivity in a rapidly urbanizing region. Sci Total Environ, 894, 165021. https://doi.org/10.1016/j.scitotenv.2023.165021
- Zhao, Q., Yu, L., Du, Z., Peng, D., Hao, P., Zhang, Y., & Gong, P. (2022). An overview of the applications of earth observation satellite data: Impacts and future trends. Remote Sens, 14(8), 1863. https://doi.org/10.3390/rs14081863
- Zhao, Y., Zhang, R., Jiang, W., & Hu, M. (2020). Influence of land use and urbanization on runoff characteristics in the Beijing metropolitan area. Water, 12(10), 2821. https://doi.org/10.3390/w12102821
- Zwarteveen, M., Kemerink-Seyoum, J. S., Kooy, M., Evers, J., Guerrero, T. A., Batubara, B., Biza, A., Boakye-Ansah, A., Faber, S., Cabrera Flamini, A., Cuadrado-Quesada, G., Fantini, E., Gupta, J., Hasan, S., ter Horst, R., Jamali, H., Jaspers, F., Obani, P., Schwartz, K., Shubber, Z., Smit, H., Torio, P., Tutusaus, M., & Wesselink, A. (2017). Engaging with the politics of water governance. WIREs Water, 4, e1245. https://doi.org/10.1002/wat2.1245
