Density Functional Theory (DFT) Investigation on the Radical-Scavenging Activity of Galantamine and Norgalantamine

Chemia Naissensis Volume 7, No.2 (2025) (стр. 23-35) 

АУТОР(И) / AUTHOR(S): Veronika Karadjova, Luciano Saso , Biljana Arsić , and Zhivko Velkov

Download Full Pdf   

DOI: 10.46793/ChemN7.2.23K

САЖЕТАК / ABSTRACT:

Galantamine, a natural alkaloid with inherent antioxidant properties, effectively crosses the blood-brain barrier, making it a promising therapeutic agent for treating certain brain-related disorders in humans. This density functional theory (DFT) study presents the results of quantum chemical calculations on the dissociation enthalpies of galantamine’s O-H and C-H bonds, elucidating its radical-scavenging activities. The findings highlight galantamine’s propensity to interact with radicals in biological systems, emphasizing the bond strength and acidity of its O-H and C-H groups. Additionally, the study explores the implications of hydride ion abstraction, shedding light on its potential reactivity and antioxidant mechanisms.

КЉУЧНЕ РЕЧИ / KEYWORDS:

galantamine, norgalantamine, radical-scavenging activity, DFT calculations

ПРОЈЕКАТ/ ACKNOWLEDGEMENT:

ЛИТЕРАТУРА / REFERENCES:

  • Ansari, M. A., & Scheff, S. W. (2010). Oxidative stress in the progression of Alzheimer disease in the frontal cortex. Journal of Neuropathology and Experimental Neurology, 69, 155-167.
  • Axelsen, P. H., Komatsu, H., & Murray, I. V. J. (2011). Oxidative stress and cell membranes in the pathogenesis of Alzheimer’s disease. Physiology, 26, 54-69.
  • Behl, C., & Moosmann, B. (2002). Oxidative nerve cell death in Alzheimer’s disease and stroke: antioxidants as neuroprotective compounds. Biological Chemistry, 383, 521-536.
  • Ece, A., & Pejin, B. (2015). A computational insight into acetylcholinesterase inhibitory activity of a new lichen depsidone. Journal of Enzyme Inhibition and Medicinal Chemistry, 30, 528-532.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov,
  • F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G.,Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., & Fox, D. J. (2016). Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT.
  • Harvey, A. L. (1995). The pharmacology of galantamine and its analogues. Pharmacology&Therapeutics, 68, 113-128.
  • Karadjova, V., Vakarelska-Popovska, M., & Velkov, Zh. (2021). Radical-scavenging activity characterization of a series of synthetic 3-phenylcoumarins. Computational and Theoretical Chemistry, 1202, 113300.
  • Marco, L., & do Carmo Carreiras, M. (2006). Galantamine, a natural product for the treatment of Alzheimer’s disease. Recent Patents on CNS Drug Discovery, 1, 105-110.
  • Markovic, Z., Tosovic, J., Milenkovic, D., & Markovic, S. (2016). Revisiting the solvation enthalpies and free energies of the proton and electron in various solvents. Computational and Theoretical Chemistry, 1077, 11-17.
  • Marlatt, M. W., Lucassen, P. J., Perry, G., Smith, M.A., & Zhu, X. (2008). Alzheimer’s disease: cerebrovascular dysfunction, oxidative stress and advanced clinical therapies. Journal of Alzheimers Disease, 15, 199-210.
  • Melo, J. B., Sousa, C., Garção, P., Oliveira, C. R., & Agostinho, P. (2009). Galantamine protects against oxidative stress induced by amyloid-beta peptide in cortical neurons. European Journal of Neuroscience, 29, 455-464.
  • Parameswari, A. R., & Kumaradhas, P. (2013). Exploring the conformation, charge density distribution and the electrostatic properties of galantamine molecule in the active site of AChE using DFT and AIM theory. International Journal of Quantum Chemistry, 113, 1200–1208.
  • Parr, R. G. (1980). Density functional theory of atoms and molecules. in: K. Fukui, B. Pullman (Eds.), Horizons of Quantum Chemistry. Academie Internationale Des Sciences Moleculaires Quantiques/International Academy of Quantum Molecular Science, vol 3. Springer: Dordrecht.
  • Petersen, R.B., Nunomura, A., Lee, H. G., Casadesus, G., Perry, G., Smith, M. A., & Zhu, X. (2007). Signal transduction cascades associated with oxidative stress in Alzheimer’s disease. Journal of Alzheimers Disease, 11, 143-152.
  • Rimarcík, J., Lukes, V., Klein, E., & Ilcin, M. (2010). Study of the solvent effect on the enthalpies of homolytic and heterolytic N-H bond cleavage in p-phenylenediamine and tetracyano-p- phenylenediamine. Journal of Molecular Structure (Theochem), 952, 25–30.
  • Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical Reviews, 105, 2999-3093.
  • Traykova, M., Traykov, T., Hadjimitova, V., Krikorian, K., & Bojadgieva, N. (2003). Antioxidant properties of galantamine hydrobromide. Zeitschrift fur Naturforschung, 58c, 361-365.
  • Tsvetkova, D., Obreshkova, D., Zheleva-Dimitrova, D., & Saso, L. (2013). Antioxidant activity of galantamine and some of its derivatives. Current Medicinal Chemistry, 20, 4595-4608.
  • Velkov, Zh., Traykov, M., Trenchev, I., Saso, L., & Tadjer, A. (2019). Topology-dependent dissociation mode of the O-H bond in monohydroxycoumarins. Journal of Physical Chemistry A, 123, 5106–5113.
  • Vezenkov, L. T., Georgieva, M. G., Danalev, D. L., Ivanov, T. B., & Ivanova, G.I. (2009). Synthesis and characterization of new galantamine derivatives comprising peptide moiety. Protein & Peptide Letters, 16, 1024-1028.
  • Vezenkov, L., Cena, H., Danalev, D., Karadjova, V., Tsekova, D., Bardarov, V., Vassilev, N. (2020). New derivatives of galantamine containing peptide fragment. Journal of Chemical Technology Metallurgy, 55, 251-260.