TiO2-CeO2 based composite materials and their application in photocatalysis: A short review

Chemia Naissensis Volume 6, No.1 (2023) (стр. 1-17) 

АУТОР(И) / AUTHOR(S): Marija Vasić Jovev, Aleksandra Krstić, Marjan Ranđelović, Radomir Ljupković, Katarina Stepić, Aleksandra Zarubica

Е-АДРЕСА / E-MAIL: marija.vasic@pmf.edu.rs

Download Full Pdf   

DOI: 10.46793/ChemN6.1.01VJ

САЖЕТАК / ABSTRACT:

In light of the ever-increasing problem of environmental pollution, photocatalysis represents one of the most promising solutions for the remediation/decomposition of wastewater pollutants. Among the materials used for the photocatalytic degradation of organic pollutants, titanium dioxide has been widely investigated due to its unique and favourable properties. On the other hand, its limitation in absorbing only about 5% of solar light and its relatively wide band gap and rapid recombination of electron-hole pairs restricts its practical application. In order to overcome this drawback and improve photocatalytic ability, various methods have been investigated. Some of the significant methods that have been extensively studied over the past decades involve the preparation of binary oxides, mixed oxide systems, composite materials, etc. This short review provides a comprehensive summary of scientific reports of titania-ceria composite materials and their applications in photocatalytic reactions reported in the literature.

КЉУЧНЕ РЕЧИ / KEYWORDS:

TiO2-CeO2, composite materials, photocatalysis

ЛИТЕРАТУРА / REFERENCES:

  • Ameen, S. Akhtar, M. S., Seo, H.-K., & Shin, H.-K. (2014). Solution-processed CeO2/TiO2 nanocomposite as potent visible light photocatalyst for the degradation of bromophenol dye. Chemical Engineering Journal, 247, 193–198.
  • Bessekhouad, Y., Robert, D., & Weber, J.-V. (2005). Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catalysis Today, 101, 315−321.
  • Bian, Z., Zhu, J., Wang, S., Cao, Y., Qian, X., & Li, H. (2008). Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallised anatase. The Journal of Physical Chemistry C, 112, 6258−6262.
  • Dokan, F. K., & Kuru, M. (2021). A new approach to optimise the synthesis parameters of TiO2 microsphere and development of photocatalytic performance. Journal of Materials Science: Materials in Electronics, 32, 640-655.
  • Jiang, H., Li, M., Liu, J., Li, X., Tian, L., & Chen, P. (2018). Alkali-free synthesis of a novel heterostructured CeO2-TiO2 nanocomposite with high performance to reduce Cr(VI) under visible light. Ceramics International, 44, 2709–2717.
  • Kumari, V., Sharma, A., Kumar, N., Sillanpaa, M., Makgwane, P. R., Ahmaruzzaman, Md., Hosseini-Bandegharaei, A., Manju Rani, M., & Chinnamuthu, P. (2023). TiO2-CeO2 assisted heterostructures for photocatalytic mitigation of environmental pollutants: A comprehensive study on band gap engineering and mechanistic aspects. Inorganic Chemistry Communications, 151, 110564.
  • Kusmierek, E. (2020). A CeO2 Semiconductor as a Photocatalytic and Photoelectrocatalytic Material for the Remediation of Pollutants in Industrial Wastewater: A Review. Catalysts, 10 (12), 1435. https://doi.org/10.3390/catal10121435
  • Luo, S., Nguyen-Phan, T.-D., Johnston-Peck, A.C., Barrio, L., Sallis, S., Arena, D.A., Kundu, S., Xu, W., Piper, L.F.J., Stach, E.A., Polyansky, D.E., Fujita, E., Rodriguez, J.A., & Senanayake, S. D. (2015). Hierarchical Heterogeneity at the CeOx−TiO2 Interface: Electronic and GeometricStructural Influence on the Photocatalytic Activity of Oxide on Oxide Nanostructures. The Journal of Physical Chemistry C, 119, 2669−2679.
  • Malekkiani, M., Ravari, F., Magham, A. H. J., Dadmehr, M., Groiss, H., Hosseini, H. A., & Sharif, R. (2022). Fabrication of Graphene-Based TiO2@CeO2 and CeO2@TiO2 Core−ShellHeterostructures for Enhanced Photocatalytic Activity and Cytotoxicity. ACS Omega, 7, 30601−30621.
  • Moongraksathum, B. & Chen, Y.-W. (2017). CeO2–TiO2 mixed oxide thin films with enhanced photocatalytic degradation of organic pollutants. Journal of Sol-Gel Science and Technology, 82, 772–782.
  • Qu, X., Xie, D., Gao, L., & Du, F. (2014). Synthesis and photocatalytic activity of TiO2/CeO2 core–shell nanotubes. Materials Science in Semiconductor Processing, 26, 657–662.
  • Siwińska-Stefańska, K., Kubiak, A., Piasecki, A., Goscianska, J., Nowaczyk, G., Jurga, S., & Jesionowski, T. (2018). TiO2-ZnO Binary Oxide Systems: Comprehensive Characterisation and Tests of Photocatalytic Activity. Materials, 11, 841.
  • Stefa, S., Lykaki, M., Fragkoulis, D., Binas, V., Pandis, P. K., Stathopoulos, V. N., & Konsolakis, M. (2020). Effect of the Preparation Method on the Physicochemical Properties and the COOxidation Performance of Nanostructured CeO2/TiO2 Oxides. Processes, 8 (7), 847. https://doi.org/10.3390/pr8070847
  • Topkaya, E., Konyar, M., Yatmaz, H. C., & Öztürk, K. (2014). Pure ZnO and composite ZnO/TiO2 catalyst plates: A comparative study for the degradation of azo dye, pesticide and antibiotic in aqueous solutions. Journal of Colloid and Interface Science, 430, 6−11.
  • Tricoli, A., Righettoni, M., & Pratsinis, S. E. (2009). Minimal Cross-Sensitivity to Humidity During Ethanol Detection by SnO2-TiO2 Solid Solutions. Nanotechnology, 20, 315502.
  • Tuyen, L. T. T., Quang, D.A., Toan, T. T. T., Tung, T.Q., Hoa, T. T., Mau, T. X., & Khieu, D.Q. (2018). Synthesis of CeO2/TiO2 nanotubes and heterogeneous photocatalytic degradation of methylene blue. Journal of Environmental Chemical Engineering, 6, 5999–6011.
  • Velu, S., Suzuki, K., Gopinath, C. S., Yoshida, H., & Hattori, T. (2002). XPS, XANES and EXAFS Investigations of CuO/ZnO/Al2O3/ZrO2 Mixed Oxide Catalysts. Physical Chemistry Chemical Physics, 4, 1990−1999.
  • Vita, A. (2020). Catalytic Applications of CeO2-Based Materials. Catalysts, 10, 576.
  • Wandre, T. M., Gaikwad, P. N., Tapase, A. S., Garadkar, K. M., Vanalakar, S. A., Lokhande, P. D., Sasikala, R., & Hankare, P. P. (2016). Sol–gel synthesised TiO2–CeO2 nanocomposite: an efficient photocatalyst for degradation of methyl orange under sunlight. Journal of Materials Science: Materials in Electronics 27, 825–833.
  • Wang, L., Wang, X., Cui, S., Fan, X., Zu, B., & Wan, C. (2013). TiO2 supported on silica nanolayers derived from vermiculite for efficient photocatalysis. Catalysis Today, 216, 95-103.
  • Yang, H., Zhang, K., Shi, R.; & Tang, A. (2007). Sol−gel synthesis and photocatalytic activity of CeO2/TiO2 nanocomposites. Journal of the American Chemical Society, 90, 1370−1374.
  • Zhang, N., Yang, Z., Chen Z., Li, Y., Liao, Y., Li, Y., Gong, M., & Chen, Y. (2018). Synthesis of Sulfur-Resistant TiO2-CeO2 Composite and Its Catalytic Performance in the Oxidation of a Soluble Organic Fraction from Diesel Exhaust. Catalysts, 8 (6), 246. https://doi.org/10.3390/catal8060246