Carbon nanotube-based electrochemical sensors for pesticide determination in aqueous solutions: a review

Chemia Naissensis Volume 1, No.1 (2018) (стр. 130-152) 

АУТОР(И) / AUTHOR(S): Jelena Čović, Aleksandra Zarubica, Aleksandar Bojić, Marjan Ranđelović

Е-АДРЕСА / E-MAIL: hemija@gmail.com

Download Full Pdf   

DOI: 10.46793/ChemN1.1.130C

САЖЕТАК / ABSTRACT: 

Excellent mechanical, electrical and magnetic properties of carbon nanotubes (CNT) make CNTs a promising material for the development of electrochemical sensors. Pesticides are very important for an increase in crop yields. However, the intensive use of pesticides can lead to the accumulation of their remains, thus creating a severe problem and risk to human and environmental health. Those are the reasons why the monitoring of pesticides in the environment is extremely important. For that purpose, electrochemical sensors based on carbon nanotubes were designed, and their main aim is pesticide monitoring at environmental samples. A review of the recent studies of environmental monitoring of pesticides using electrochemical sensors based on carbon nanotubes is presented.

КЉУЧНЕ РЕЧИ / KEYWORDS:

electrochemical sensors, pesticides, carbon nanotubes

ЛИТЕРАТУРА / REFERENCES:

  • Andrews, R., Jacques, D., Qian, D., & Rantell, T. (2002). Multiwall carbon nanotubes: Synthesis and application. Accounts of Chemical Research, 35, 1008–1017.
  • Apetrei, C., Apetrei, I. M., Saja, J. A. D., & Rodriguez-Mendez, M. L. (2011). Carbon paste electrodes made from different carbonaceous materials: Application in the study of antioxidants. Sensors, 11, 1328–1344.
  • Batra, R. C., & Sears, A. (2007). Continuum models of multi-walled carbon nanotubes. International Journal of Solids and Structures, 44 (22-23), 7577-7596.
  • Bethune, D. S., Kiang, C. H., De Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., & Beyers, R. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature (London), 363, 605-607.
  • Chen, M., Zhao, Z., Lan, X., Chen, Y., Zhang, L., Ji, R., & Wang, L. (2015). Determination of carbendazim and metiram pesticides residues in reapeseed and peanut oils by fluorescence spectrophotometry. Measurement, 73, 313–317.
  • Cvetićanin, M. J. (2013). Functionalized materials based on carbon nanotubes. Doctoral dissertation, Belgrade.
  • Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8, 1402–1419.
  • Demczyk, B. G., Wang, Y. M., Cumings, J., Hetman, M., Han, W., Zettl, A., & Ritchie, R. O. (2002). Direct mechanical measurement of the tensile strength and elastic modulus of multi walled carbon nanotubes. Materials Science and Engineering: A, 334, 173–178.
  • Domínguez, I., Romero González, R., Arrebola Liébanas, F. J., Martínez Vidal, J. L., & Garrido Frenich, A. (2016). Automated and semi-automated extraction methods for GC – MS determination of pesticides in environmental samples. Trends in Environmental Analytical Chemistry, 12, 1–12.
  • Eguílaz, M., Gutierrez, F., González-Domínguez, J. M., Martínez, M. T., & Rivas, G. (2016). Single-walled carbon nanotubes covalently functionalized with polytyrosine: A new material for the development of NADH-based biosensors. Biosensors and Bioelectronics, 86, 308– 314.
  • Ghodsi, J., & Rafati, A. A. (2017). A voltammetric sensor for diazinon pesticide based on electrode modified with TiO2 nanoparticles covered multi walled carbon nanotube nanocomposite. Journal of Electroanalytical Chemistry, 807, 1-9.
  • Govindhan, M., Lafleur, T., Adhikari, B. R., & Chen, A. (2015). Electrochemical sensor based on carbon nanotubes for the simultaneous detection of phenolic pollutants. Electroanalysis, 27, 902–909.
  • Gruzdyev, G. S. (1988). The chemical protection of plants. (2nd ed.). Moscow: Mir Publishers.
  • Hong, S., & Myung, S. (2007). Nanotube electronics: A flexible approach to mobility. Nature Nanotechnology, 2, 207–208.
  • Husmann, S., & Zarbin, A. J. G. (2016). Design of a prussian blue analogue/carbon nanotube thin-film nanocomposite: Tailored precursor preparation, synthesis, characterization, and application. Chemistry-A European Journal, 22, 6643–6653.
  • Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature (London), 354, 56-58. Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature (London), 363, 603-605.
  • Inam, R., & Bilgin, C. (2013). Square wave voltammetric determination of methiocarb insecticide based on multiwall carbon nanotube paste electrode. Journal of Applied Electrochemistry, 43, 425–432.
  • Lemos, M. A. T., Matos, C. A., De Resende, M. F., Prado, R. B., Donagemma, R. A., & Netto, A. D. P. (2016). Development, validation, and application of a method for selected avermectin determination in rural waters using high performance liquid chromatography and fluorescence detection. Ecotoxicology and Environmental Safety, 133, 424–432.
  • Leniart, A., Brycht, M., Burnat, B., & Skrzypek S. (2016). Voltammetric determination of the herbicide propham on glassy carbon electrode modified with multi-walled carbon nanotubes. Sensors and Actuators B: Chemical, 231, 54-63.
  • Li, J., Kuang, D., Feng, Y., Zhang, F., Xu, Z., Liu, M., & Wang, D. (2013). Electrochemical tyrosine sensor based on a glassy carbon electrode modified with a nanohybrid made from graphene oxide and multiwalled carbon nanotubes. Microchimica Acta, 180, 49–58.
  • Li, S., Yin, G., Wu, X., Liu, C., & Luo, L. (2016). Supramolecular imprinted sensor for carbofuran detection based on a functionalized multiwalled carbon nanotube-supported Pd-Ir composite and methylene blue as catalyst. Electrochimica Acta, 188, 394-300.
  • López, A., Dualde, P., Yusà, V., & Coscollà, C. (2016). Retrospective analysis of pesticide metabolites in urine using liquid chromatography coupled to high-resolution mass spectrometry. Talanta, 160, 547–555.
  • Mol, H. G. J., Tienstra, M., & Zomer, P. (2016). Evaluation of gas chromatography – Electron ionization – Full scan high resolution orbitrap mass spectrometry for pesticide residue analysis. Analytica Chimica Acta, 935, 161–172.
  • Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S. L., Schatz, G. C., & Espinosa, H. D. (2008). Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotechnology, 3, 626–631.
  • Rather, J. A., & De Wael, K. (2012). C60-functionalized mwcnt based sensor for sensitive detection of endocrine disruptor vinclozolin in solubilized system and wastewater. Sensors and Actuators B: Chemical, 171–172, 907–915.
  • Salehzadeh, H., Ebrahimi, M., Nematollahi, D., & Salarin, A. A. (2016). Electrochemical study of fenitrothion and bifenox and their simultaneous determination using multiwalled carbon nanotube modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 767, 188-194.
  • Salih, F. E., Achiou, B., Ouammou, M., Bennazha, J., Ouarzane, A., Younssi, S. A., & Rhazi, M. E. (2017). Electrochemical sensor based on low silica X zeolite modified carbon paste for carbaryl determination. Journal of Advenced Research, 8, 669-676.
  • Shahtaheria, S. J., Faridbod, F., & Khadem M. (2017). Highly selective voltammetric sensor based on molecularly imprinted polymer and carbon nanotubes to determine the dicloran pesticide in biological and environmental samples. Procedia Technology, 27, 96-97.
  • Sipa, K., Brycht, M., Leniart, A., Urbaniak, P., Nosal-Wiercińska, A., Pałecz, B., & Skrzypek, S. (2018). β–Cyclodextrins incorporated multi-walled carbon nanotubes modified electrode for the voltammetric determination of the pesticide dichlorophen. Talanta, 176, 625-634.
  • Sundari, P. L. A., Palaniappan, S. P., & Manisankar, P. (2010). Enhanced sensing of carbendazim, a fungicide on functionalized multiwalled carbon nanotube modified glassy carbon electrode and its determination in real samples. Analytical Letters, 43, 1457–1470.
  • Teadoum, D. N., Noumbo, S. K., Arnaud, K. T., Ranil, T. T., Ze Mvondo, A. D., & Tonle, I. K. (2016). Square wave voltammetric determination of residues of carbendazim using a fullerene/multiwalled carbon nanotubes/nafion/coated glassy carbon electrode. International Journal of Electrochemistry, 2016, 7839708.
  • Wang, T., Zhao, D., Guo, X., Correa, J., Riehl, B. L., & Heineman, W. R. (2014). Carbon nanotube-loaded nafion film electrochemical sensor for metal ions: Europium. Analytical Chemistry, 86, 4354–4361.
  • Yang, J., Wang, Q., Zhang, M., Zhang, S., & Zhang, L. (2015). An electrochemical fungicide pyrimethanil sensor based on carbon nanotubes/ionic-liquid construction modified electrode. Food Chemistry, 187, 1–6.
  • Yang, N., Chen, X., Ren, T., Zhang, P., & Yang, D. (2015). Carbon nanotube based biosensors. Sensors and Actuators B: Chemical, 207, 690–715.
  • Zhang, M., Zhao, H. T., Yang, X., Dong, A. J. Zhang, H., Wang, J., Liu, G. Y., & Zhai, X. C. (2016). A simple and sensitive electrochemical sensor for new neonicotinoid insecticide Paichongding in grain samples based on β-cyclodextrin-graphene modified glassy carbon electrode. Sensors and Actuators B: Chemical, 229, 190-199.
  • Zhang, Y., Kang, T.-F., Wan, Y.-W., & Chen, S.-Y. (2009). Gold nanoparticles-carbon nanotubes modified sensor for electrochemical determination of organophosphate pesticides. Microchimica Acta, 165, 307–311.