Analysis of Security and Intelligence Data Obtained through OSINT Techniques Using the Apache Hadoop Big Data Platform : Instructions for Authors

Proceedings of International Scientific Conference „ALFATECH – Smart Cities and modern technologies“ (pp. 188-191) 

 

АУТОР(И) / AUTHOR(S): Nikola Petrović, Vojkan Nikolić   

 

Download Full Pdf   

DOI:  10.46793/ALFATECHproc25.188P

САЖЕТАК / ABSTRACT:

Apache Hadoop is a platform for storing, processing, and analyzing large amounts of data. Some of the capabilities of this platform include data storage in HDFS (Hadoop Distributed File System) and the execution of complex HiveQL queries. In addition to Apache Hadoop, which is used in this paper for processing and analyzing the collected data, convolutional neural networks were also employed for image analysis. Data collection was carried out using various OSINT (Open-Source Intelligence) techniques, which involve locating, selecting, and gathering information from publicly available sources.

КЉУЧНЕ РЕЧИ / KEYWORDS:

Big Data, Apache Hadoop, OSINT

ПРОЈЕКАТ / ACKNOWLEDGEMENT:

ЛИТЕРАТУРА / REFERENCES:

  • Koops, BP., Hoepman, JP. & Leenes, R. 2013. Open Source Intelligence and   Privacy By Design. Journal of Computer Law & Security Review, Elsevier, Tilburg University, The Netherlands
  • Wiil, U. K. 2011 Counter Terrorism and Open Source Intelligence: Lecture Notes In Social Networks. Vol 2. 15 – 28. Denmark.
  • Pradeepa, A., &Thanamani, A. S. (2013). Hadoop file system and fundamental concept of MapReduce interior and closure rough set  approximations. International Journal of Advanced Research in  Computer and Communication Engineering, 2(10), 5865-5868
  • J. Ekanayake, S. Pallickara, G. Fox, MapReduce for data intensive scientific analyses, in: Proceedings of Fourth IEEE International Conference on eScience, Indianapolis, Indiana, USA, 2008, pp. 277–284
  • Verma, A., Mansuri,  A.  H.,  &  Jain,  N.  (2016,  March).  Big data management  processing  with  HadoopMapReduce  and  spark technology:  A  comparison.  In  2016  Symposium  on  Colossal Data Analysis and Networking (CDAN) (pp. 1-4). IEEE.
  • Grinev. M., Grineva. M., et ai, „Analytics for the real-time web“, In PVLDB, 4(12):1391-1394, September 2011.
  • Helmi, R., Yusuf, S., & Jamal, A. (2019). Face recognition automatic class attendance system (FRACAS). In IEEE international conference on automatic control and intelligent systems (I2CACIS 2019), Selangor, Malaysia, June 29, 2019.
  • Zhao, Z.-Q., Zheng, P., Xu, S., & Wu, X. (2019). Object detection with deep learning: A review. IEEE Transactions on Neural Networks and Learning Systems,30(11), 3212–3232.