CLASSIFICATION, CONFLICT MAPPING AND CRITICALITY ASSESSMENT OF UNDERGROUND ASSETS: A HOLISTIC APPROACH FOR INFORMED DECISION MAKERS

19th WORLD CONFERENCE OF THE ASSOCIATED RESEARCH CENTRES FOR THE URBAN UNDERGROUND SPACE, Belgrade, Serbia, November 4-7, 2025. (Paper No: 6.1.175,  pp. 860-870)

 

АУТОР(И) / AUTHOR(S): Mária Hámor-Vidó, Tamás Hámor, János Kovács

 

Download Full Pdf   

DOI:  10.46793/ACUUS2025.6.1.175

САЖЕТАК / ABSTRACT:

This study proposes a new classification of underground natural resources and provides pragmatic subclasses for consideration at spatial planning and asset management (e.g. in preparation for concessions). In case of urban underground space six major types are indicated: supply utilities, transport, housing & leisure, commerce & industry, public institutions, and civil protection. A quantitative, focused mapping of conflicts and interlinkages between these resources, regardless of the surface environmental compartments and the geological hazards, was carried out. It identified that groundwater, minerals and urban underground infrastructure have the most numerous conflicts, often resulting from the provisions of non-harmonized sectoral laws. Ownership of assets and permitting are the focal legal aspects to be resolved, especially in urban setting. For example, the collision of state vs. private ownership became obvious in case of inclined or horizontal wells for geothermal facilities and hydrocarbons. As well, the extension to depth of house- and landowners’ rights shall be revised in national civil codes, construction laws and trespassing acts because of deep garages and cellars already entering the depth of others assets. Fine-tuning the legislation, the transformation of land use planning into spatial planning supported by publicly accessible online 3D(4D) geoinformation system, the comparative criticality assessment of underground assets, and the systematic use of strategic impact assessment for relevant national and regional programs are the set of potential tools that can improve the current malfunctioning silo-type sectoral governance.

КЉУЧНЕ РЕЧИ / KEYWORDS:

underground space, geological resources, criticality assessment, good governance

ПРОЈЕКАТ / ACKNOWLEDGEMENT:

ЛИТЕРАТУРА / REFERENCES:

  • Admiraal, H. and Cornaro, A. (2016). Why underground space should be included in urban planning policy – and how this will enhance an urban underground future. Tunnelling and Underground Space Technology, 55, 214-220.
  • Besner, J. (2017). Cities think underground–Underground space (also) for people. Procedia engineering, 209, 49-55.
  • Broch, E. (2016). Planning and utilisation of rock caverns and tunnels in Norway. Tunnelling and Underground Space Technology, 55, 329–338. http://dx.doi.org/10.1016/j.tust.2015.08.010
  • Broere, W. (2016). Urban underground space: Solving the problems of today’s cities. Tunnelling and Underground Space Technology, 55, 245–248. http://dx.doi.org/10.1016/j.tust.2015.11.012
  • Carmody, J. and Sterling, R. (1993). Underground Space Design: A Guide to Subsurface Utilization and Design for People in Underground Spaces. Van Nostrand Reinhold, New York, ISBN10:0442013833
  • Chen, Z., Chen, J., Liu, H., Zhang, Z. (2018). Present status and development trends of underground space in Chinese cities: Evaluation and analysis, Tunnelling and Underground Space Technology, 71, 253-270. https://doi.org/10.1016/j.tust.2017.08.027.
  • Christmann, P. (2021). Mineral Resource Governance in the 21st Century and a sustainable European Union. Mineral Economics, 34, 187-208. https://doi.org/10.1007/s13563-021-00265-4
  • Creutzig, F. (2017). Govern land as a global commons. Nature News, 546(7656), 28.
  • Dellapenna, J. and Gupta, J. (eds.) (2009). The Evolution of the Law and Politics of Water. Springer, Dordrecht, 414.
  • EUR-Lex, https://eureuropa.eu/homepage.html
  • EU INSPIRE Directive Protocol; https://inspire-mif.github.io/technical-guidelines/data/mr/dataspecification_mr.pdf
  • European Commission, Raw Materials Information System, https://rmis.jrc.ec.europa.eu/
  • European Commission (2013). Strategic Implementation Plan of the European Innovation Partnership on Raw Materials. https://ec.europa.eu/growth/sectors/raw-materials/eip/strategic-implementation-plan_en
  • European Commission (2020a). Communication from the Commission to the European Parliament and the Council 2020 Strategic foresight report – Charting the course towards a more resilient Europe. COM/2020/493 final
  • European Commission (2020b). Circular Economy Action Plan, 28 p. https://ec.europa.eu/environment/circulareconomy/pdf/new_circular_economy_action_plan.pdf
  • Field, B., Barton, B., Funnell, R., Higgs, K., Nicol, A., Seebeck, H. (2018). Managing potential interactions of subsurface resources. Proceedings of the Institution of Mechanical Engineers, 232(1), 6-11.
  • Geologic Society of London (2019). 4D Subsurface Modelling: Predicting The Future. Burlington House, London https://www.geolsoc.org.uk/~/media/shared/documents/events/2019/4D%20subsurface%20modelling/4D%20Subsurface%20Modelling%20Programme.pdf
  • Global CCS Institute, 2020. Global status of CCS 2020. 44 p. https://www.globalccsinstitute.com/wpcontent/uploads/2020/12/Global-Status-of-CCS-Report-2020_FINAL_December11.pdf
  • Griffioen, J., van Wensem, J., Oomes, J.L., Barends, F., Breunese, J., Bruining, H., van der Stoel, A.E. (2014). A technical investigation on tools and concepts for sustainable management of the subsurface in The Netherlands. Science of the Total Environment, 485, 810-819.
  • Hámor, T., Hámor-Vidó, M., Correia, V. (2020). Geology, the regulated discipline and profession in Europe. Episodes, 44(3), 219-226. https://doi.org/10.18814/epiiugs/2020/020075
  • Hámorné Vidó, M., Hámor, T., Czirok, L. (2021). Underground Space, The Legal Governance of a Critical Resource in Circular Economy. Resources Policy, 73, DOI: 10.1016/j.resourpol.2021.102171
  • Huanqing L., Xiaozhao, L., Kiong, S. C. (2016). An integrated strategy for sustainable development of the urban underground: From strategic, economic and societal aspects. Tunnelling and Underground Space Technology, 55, 67–82. http://dx.doi.org/10.1016/j.tust.2015.12.011
  • Hungarian Jogtár, https://uj.jogtar.hu/#first/
  • International Tunneling Association (2000). Planning and Mapping of Underground Space, an Overview. Tunneling and Underground Space Technology, 15(3), 271-286.
  • International Resource Panel (2020). Mineral Resource Governance in the 21st Century: Gearing extractive industries towards sustainable development. A Report by the International Resource Panel. United Nations Environment Programme, Nairobi, Kenya., 374, https://resourcepanel.org/reports/mineralresourcegovernance21stcentury
  • Kaliampakos, D. (2016). Underground development: A springboard to make city life better in the 21st century. Procedia Engineering, 165, 205-213. https://doi.org/10.1016/j.proeng.2016.11.792.
  • Kaliampakos, D., Benardos, A., Mavrikos, A. (2016). A review on the economics of underground space utilization. Tunnelling and Underground Space Technology 55, 236–244. http://dx.doi.org/10.1016/j.tust.2015.10.022
  • Kishii, T. (2016). Utilization of underground space in Japan. Tunnelling and Underground Space Technology 55, 320–323. http://dx.doi.org/10.1016/j.tust.2015.12.007
  • Lee, J. (2018). Urban Subterranean Space: A link between a ground level public space and underground infrastructure. Thesis. Rochester Institute of Technology. 157 p., Accessed from https://scholarworks.rit.edu/theses
  • Lee, E.H., Christopoulos, G.I., Lu, M., Heo, M.Q., Soh, C.K. (2016). Social aspects of working in underground spaces. Tunneling and Underground Space Technology 55, 135–145. http://dx.doi.org/10.1016/j.tust.2015.12.012
  • Li, H.Q., Parriaux, A., Thalmann, P., Li, X.Z. (2013). An integrated planning concept for the emerging underground urbanism: Deep City Method, Tunneling and Underground Space Technology 38, 559–568.
  • Makana, L.O., Jefferson, I., Hunt, D.V.L., Rogers, C.V.F. (2016). Assessment of the future resilience of sustainable urban sub-surface environments. Tunneling and Underground Space Technology, 55, 21–31.
  • Mielby, S., Eriksson, I., Campbell, D.G., de Beer, J., Bonsor, H., Le Guern, C., van der Krogt, R., Lawrence, D., Ryżyński, G., Schokker, J., Watson, C. (2017). Opening up the subsurface for the cities of tomorrow. TU1206 COST Sub-Urban Report, 120. www.sub-urban.eu
  • Norrman, J., Sandström, O. T., de Lourdes Melo Zurita, M., Mossmark, F., Frisk, L. E., Melgaço, L., Söderqvist, T., Lindgren, P., Volchko, Y., Svahn, V. (2024). Deep planning: improving underground developments through inter- and transdisciplinary collaboration on geosystem services. European Geologist, 57, pp. 58-62., https://doi.org/10.5281/zenodo.12205943
  • Qiao, Y.K., Penga, F.L., Wangb, Y. (2017). Monetary valuation of urban underground space: A critical issue for the decision-making of urban underground space development. Land Use Policy, 69, 12–24, http://dx.doi.org/10.1016/j.landusepol.2017.08.037
  • Pearman, G. (2009). 101 things to do with a hole in the ground. Post-mining Alliance, ISBN 978-0-9562213, 138.
  • Soltani, M., Kashkooli, F. M., Souri. M., Rafiei, B., Jabarifar, M., Gharali, K., Nathwani, J. S. (2021). Environmental, economic, and social impacts of geothermal energy systems. Renewable and Sustainable Energy Reviews, 140. https://doi.org/10.1016/j.rser.2021.110750
  • Takasaki, H., Chikahisa, H., Yuasa, Y. (2000). Planning and Mapping of Subsurface Space in Japan. Tunnelling and Underground Space Technology, 15(3), 287-301.
  • UK Government Office for Science (2024): Future of the subsurface: subsurface space management in the UK, 26 p. https://www.gov.uk/government/publications/future-of-the-subsurface-report/future-of-the-subsurface-subsurface-space-management-in-the-uk-annex#references
  • UN Economic and Social Commission for Asia and the Pacific (1998). What is good governance? UN, 3., https://www.unescap.org/sites/default/files/good-governance.pdf
  • United States Geological Survey, Mineral Resources Program, https://www.usgs.gov/energy-and-minerals/mineral-resources-program
  • Van der Meulen, M.J., Doornenbal, J.C., Gunnink, J.L., Stafleu, J., Schokker, J., Vernes, R.W., van Geer, F.C., van Gessel, S.F., van Heteren, S., van Leeuwen, R.J.W., Bakker, M.A., Bogaard, P.J.F., Busschers, F.S., Griffioen, J., Gruijters, S.H.L.L. Kiden, P., Schroot, B.M., Simmelink, H.J., van Berkel, W.O., van der Krogt, R.A.A., Westerhoff, W.E., van Daalen, T.M. (2013). 3D geology in a 2D country: perspectives for geological surveying in the Netherlands. Netherlands Journal of Geosciences, 92(4), 217-241.
  • Volchko, Y., Norrman, J., Ericsson, L.O., Nilsson, K.L., Markstedt, A., Oberg, M., Mossmark, F., Bobylev, N., Tengborg, P. (2020). Subsurface planning: Towards a common understanding of the subsurface as a multifunctional resource. Land Use Policy 90, 104316, https://doi.org/10.1016/j.landusepol.2019.104316
  • Von der Tann, L., Sterling, R., Zhou, Y., Metje, N. (2020). Systems approaches to urban underground space planning and management – a review. Underground Space, 5, 144-166. https://www.sciencedirect.com/science/article/pii/S2467967418301119#s0025
  • Xiea, H., Zhaoc, J.W., Zhoud, H.W., Renf, S.H., Zhangg, R.X. (2020). Secondary utilizations and perspectives of mined underground space. Tunnelling and Underground Space Technology 96 (2020) 103129, https://doi.org/10.1016/j.tust.2019.103129
  • Zaini, F., Hussin, K., Raid, M.M. (2017). Legal considerations for urban underground space development in Malaysia. Underground Space 2, 234–245, https://doi.org/10.1016/j.undsp.2017.11.001
  • Zhou, Y., Zhao, J. (2016). Assessment and planning of underground space use in Singapore. Tunnelling and Underground Space Technology, 55, 249–256. http://dx.doi.org/10.1016/j.tust.2015.12.018