19th WORLD CONFERENCE OF THE ASSOCIATED RESEARCH CENTRES FOR THE URBAN UNDERGROUND SPACE, Belgrade, Serbia, November 4-7, 2025. (Paper No: 3.10.178, pp. 551-559)
АУТОР(И) / AUTHOR(S): Dimitris Kaliampakos, Athanassios Mavrikos
Download Full Pdf 
DOI: 10.46793/ACUUS2025.3.10.178
САЖЕТАК / ABSTRACT:
Driven by global population growth, demand for energy is constantly rising. The dependence on fossil fuels as energy sources results in ever growing CO2 emissions, which in turn contributes to climate change. The transition from fossil fuel dependency towards a sustainable, low-carbon energy system is considered as a necessity for the future. A shift to renewable energy sources is associated with several problems due to their stochastic production nature that poses significant challenges for grid reliability and energy security. A solution to this end would be to be able to store excess energy from renewable sources so that it can be available when needed. The main technologies that have been proposed are underground hydrogen storage, pumped hydro storage, compressed air energy storage and gravitational energy storage. Furthermore, nuclear energy has recently come to the foreground due to its zero carbon emissions and contribution to grid stability. A common factor among all the proposed approaches is the use of underground space, underground mines in particular, and the inherent geological and structural characteristics of underground environments. Underground mines offer considerable advantages to this end and the utilization and repurpose of abandoned underground mines presents a significant opportunity. The paper discusses the factors contributing to the need for energy transition and the main obstacles that hinder the wider use of renewable energy sources. Furthermore, the advantages of underground mines and underground space in general are analyzed. The most promising storage technologies are presented through notable cases and reviewed.
КЉУЧНЕ РЕЧИ / KEYWORDS:
energy transition, climate change, underground space
ПРОЈЕКАТ / ACKNOWLEDGEMENT:
ЛИТЕРАТУРА / REFERENCES:
- Chaurasia, A. (2020). Population effects of increase in world energy use and CO2 emissions: 1990–2019. The Journal of Population and Sustainability, 5(1), 87–125. https://doi.org/10.3197/jps.2020.5.1.87
- Ali, M., Isah, A., Yekeen, N., Hassanpouryouzband, A., Sarmadivaleh, M., Okoroafor, E. R., Al Kobaisi, M., Mahmoud, M., Vahrenkamp, V., & Hoteit, H. (2025). Recent progress in underground hydrogen storage. Energy Environ. Sci., 18(12), 5740–5810. https://doi.org/10.1039/D4EE04564E
- Yakymchuk, A., Maxand, S., & Lewandowska, A. (2025). Economic Analysis of Global CO2 Emissions and Energy Consumption Based on the World Kaya Identity. Energies, 18(7), 1661. https://doi.org/10.3390/en18071661
- World Weather Attribution 2024 (2024). When Risks Become Reality: Extreme Weather In 2024, available at: https://www.worldweatherattribution.org/when-risks-become-reality-extreme-weather-in-2024/ (Accessed 25.06.2025)
- IPCC, (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115, doi: 10.59327/IPCC/AR6-9789291691647
- Liu, H., & Han, P. (2024). Renewable energy development and carbon emissions: The role of electricity exchange. Journal of Cleaner Production, 439, 140807. https://doi.org/10.1016/j.jclepro.2024.140807
- United Nations Environment Programme (2023). Emissions Gap Report 2023: Broken Record – Temperatures hit new highs, yet world fails to cut emissions (again). Nairobi. https://doi.org/10.59117/20.500.11822/43922
- Forster, P. M., Smith, C., Walsh, T., Lamb, W. F., Lamboll, R., Cassou, C., Hauser, M., Hausfather, Z., Lee, J.-Y., Palmer, M. D., von Schuckmann, K., Slangen, A. B. A., Szopa, S., Trewin, B., Yun, J., Gillett, N. P., Jenkins, S., Matthews, H. D., Raghavan, K., Ribes, A., Rogelj, J., Rosen, D., Zhang, X., Allen, M., Aleluia Reis, L., Andrew, R. M., Betts, R. A., Borger, A., Broersma, J. A., Burgess, S. N., Cheng, L., Friedlingstein, P., Domingues, C. M., Gambarini, M., Gasser, T., Gütschow, J., Ishii, M., Kadow, C., Kennedy, J., Killick, R. E., Krummel, P. B., Liné, A., Monselesan, D. P., Morice, C., Mühle, J., Naik, V., Peters, G. P., Pirani, A., Pongratz, J., Minx, J. C., Rigby, M., Rohde, R., Savita, A., Seneviratne, S. I., Thorne, P., Wells, C., Western, L. M., van der Werf, G. R., Wijffels, S. E., Masson-Delmotte, V., and Zhai, P. (2025). Indicators of Global Climate Change 2024: annual update of key indicators of the state of the climate system and human influence, Earth Syst. Sci. Data, 17, 2641–2680, https://doi.org/10.5194/essd-17-2641-2025
- Islam, Md and Kieu, E. (2021). Climate Change and Food Security in Asia Pacific: Response and Resilience. 10.1007/978-3-030-70753-8
- Molina, R. A., Barros, J. J. C., López, M. del P. de la C., Coira, M. L., & Gochi, A. del C. (2025). A comparative sustainability assessment of several grid energy storage technologies. Applied Energy, 396, 126248. https://doi.org/10.1016/j.apenergy.2025.126248
- Qin, Z., Ma, J., Zhu, M., & Khan, T. (2025). Advancements in energy storage technologies: Implications for sustainable energy strategy and electricity supply towards sustainable development goals. Energy Strategy Reviews, 59, 101710. https://doi.org/10.1016/j.esr.2025.101710
- Liu, J., Pei, J., Wei, J., Yang, J., & Xu, H. (2025). Development status and prospect of salt cavern energy storage technology. Earth Energy Science, 1(2), 159–179. https://doi.org/10.1016/j.ees.2025.01.001
- Li, Z., & Deusen, D. (2025). Role of energy storage technologies in enhancing grid stability and reducing fossil fuel dependency. International Journal of Hydrogen Energy, 102, 1055–1074. https://doi.org/10.1016/j.ijhydene.2024.12.489
- Wang, Q., Guo, J., Li, R., & Jiang, X. (2023). Exploring the role of nuclear energy in the energy transition: A comparative perspective of the effects of coal, oil, natural gas, renewable energy, and nuclear power on economic growth and carbon emissions. Environmental Research, 221, 115290. https://doi.org/10.1016/j.envres.2023.115290
- Imran, M., Zaman, K., Nassani, A. A., Dincă, G., Khan, H. ur R., & Haffar, M. (2024). Does nuclear energy reduce carbon emissions despite using fuels and chemicals? Transition to clean energy and finance for green solutions. Geoscience Frontiers, 15(4), 101608. https://doi.org/10.1016/j.gsf.2023.101608
- Fattahi, A., Sijm, J., Broek, M. V. den, Gordón, R. M., Dieguez, M. S., & Faaij, A. (2022). Analyzing the techno-economic role of nuclear power in the Dutch net-zero energy system transition. Advances in Applied Energy, 7, 100103. https://doi.org/10.1016/j.adapen.2022.100103
- International Energy Agency (IEA). (2024). Global installed energy storage capacity by scenario, 2023 and 2030.
- Available at: https://www.iea.org/data-and-statistics/charts/global-installed-energy-storage-capacity-by-scenario-2023-and-2030 (Accessed 12.09.2025)
- (2024). Renewables 2024 Global Status Report. REN21 Secretariat, Paris. Available at: https://www.ren21.net/reports/global-status-report/ (Accessed 12.09.2025)
- Cornaro, A., & Kompatscher, M. (2024). Underground Space Use for Renewable Energy Production and Storage (pp. 259–265). https://doi.org/10.1007/978-981-97-1257-1_33
- Sambo, C., Dudun, A., Samuel, S. A., Esenenjor, P., Muhammed, N. S., & Haq, B. (2022). A review on worldwide underground hydrogen storage operating and potential fields. International Journal of Hydrogen Energy, 47(54), 22840–22880. https://doi.org/10.1016/j.ijhydene.2022.05.126
- Tackie-Otoo, B. N., & Haq, M. B. (2024). A comprehensive review on geo-storage of H2 in salt caverns: Prospect and research advances. Fuel, 356, 129609. https://doi.org/10.1016/j.fuel.2023.129609
- Xi, F., Yan, R., Shi, J., Zhang, J., & Wang, R. (2022). Pumped storage power station using abandoned mine in the Yellow River basin: A feasibility analysis under the perspective of carbon neutrality. Frontiers in Environmental Science, Volume 10-2022. https://doi.org/10.3389/fenvs.2022.983319
- Colas, E., Klopries, E.-M., Tian, D., Kroll, M., Selzner, M., Bruecker, C., Khaledi, K., Kukla, P., Preuße, A., Sabarny, C., Schüttrumpf, H., & Amann, F. (2023). Overview of converting abandoned coal mines to underground pumped storage systems: Focus on the underground reservoir. Journal of Energy Storage, 73, 109153. https://doi.org/10.1016/j.est.2023.109153
- Menéndez, J., Schmidt, F., Konietzky, H., Fernández-Oro, J. M., Galdo, M., Loredo, J., & Díaz-Aguado, M. B. (2019). Stability analysis of the underground infrastructure for pumped storage hydropower plants in closed coal mines. Tunnelling and Underground Space Technology, 94, 103117. https://doi.org/10.1016/j.tust.2019.103117
- Zhou, A., Li, P., Fan, L., Yi, Z., Tang, X., & Fei, W. (2025). Influence of drainage system on the stability of underground CAES gas storage under different lateral pressure coefficients. Tunnelling and Underground Space Technology, 159, 106444. https://doi.org/10.1016/j.tust.2025.106444
- Bu, X., Huang, S., Liu, S., Yang, Y., Shu, J., Tan, X., Chen, H., & Wang, G. (2024). Efficient utilization of abandoned mines for isobaric compressed air energy storage. Energy, 311, 133392. https://doi.org/10.1016/j.energy.2024.133392
- Schmidt, F., Menéndez, J., Konietzky, H., Jiang, Z., Fernández-Oro, J. M., Álvarez, L., & Bernardo-Sánchez, A. (2024). Technical feasibility of lined mining tunnels in closed coal mines as underground reservoirs of compressed air energy storage systems. Journal of Energy Storage, 78, 110055. https://doi.org/10.1016/j.est.2023.110055
- Hunt, J. D., Zakeri, B., Jurasz, J., Tong, W., Dąbek, P. B., Brandão, R., Patro, E. R., Đurin, B., Filho, W. L., Wada, Y., Ruijven, B. v., & Riahi, K. (2023). Underground Gravity Energy Storage: A Solution for Long-Term Energy Storage. Energies, 16(2), 825. https://doi.org/10.3390/en16020825
- Kulpa, J., Kamiński, P., Stecuła, K., Prostański, D., Matusiak, P., Kowol, D., Kopacz, M., & Olczak, P. (2021). Technical and Economic Aspects of Electric Energy Storage in a Mine Shaft—Budryk Case Study. Energies, 14(21). https://doi.org/10.3390/en14217337
- Wang, Q., Guo, J., Li, R., & Jiang, X. (2023). Exploring the role of nuclear energy in the energy transition: A comparative perspective of the effects of coal, oil, natural gas, renewable energy, and nuclear power on economic growth and carbon emissions. Environmental Research, 221, 115290. https://doi.org/10.1016/j.envres.2023.115290
- Dong, D., Wang, Z., Guan, J., & Xiao, Y. (2025). Research on safe disposal technology and progress of radioactive nuclear waste. Nuclear Engineering and Design, 435, 113934. https://doi.org/10.1016/j.nucengdes.2025.113934
- Mauke, R., & Herbert, H.-J. (2015). Large scale in-situ experiments on sealing constructions in underground disposal facilities for radioactive wastes – Examples of recent BfS- and GRS-activities. Progress in Nuclear Energy, 84, 6–17. https://doi.org/10.1016/j.pnucene.2015.04.010
- Chapman, N., & Hooper, A. (2012). The disposal of radioactive wastes underground. Proceedings of the Geologists’ Association, 123(1), 46–63. https://doi.org/10.1016/j.pgeola.2011.10.001
- Matos, C. R., Carneiro, J. F., & Silva, P. P. (2019). Overview of Large-Scale Underground Energy Storage Technologies for Integration of Renewable Energies and Criteria for Reservoir Identification. Journal of Energy Storage, 21, 241–258. https://doi.org/10.1016/j.est.2018.11.023
- Advanced Clean Energy Storage (ACES) Delta project, https://aces-delta.com/ (Accessed 24.06.2025)
- China Energy Engineering Group Co., Ltd., http://en.ceec.net.cn/art/2025/1/10/art_138_2510992.html (Accessed 25.06.2025)
- Li, H., Ma, H., Liu, J., Zhu, S., Zhao, K., Zheng, Z., Zeng, Z., & Yang, C. (2023). Large-scale CAES in bedded rock salt: A case study in Jiangsu Province, China. Energy, 281, 128271. https://doi.org/10.1016/j.energy.2023.128271
- SKB, 2008. Site description of Forsmark at completion of the site investigation phase. Technical Report TR-08-05, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden (https://skb.se/publication/1868223/TR-08-05.pdf Accessed 25/06/2025)
- Johnson, S., (2025, January 15). Sweden starts building 100,000 year storage site for spent nuclear fuel. Reuters. https://www.reuters.com/business/energy/sweden-starts-building-100000-year-storage-site-spent-nuclear-fuel-2025-01-15/ (Accessed 25.06.2025)
- Young, R. P., Nasseri, M. H. B., & Sehizadeh, M. (2020). Mechanical and seismic anisotropy of rocks from the ONKALO underground rock characterization facility. International Journal of Rock Mechanics and Mining Sciences, 126, 104190. https://doi.org/10.1016/j.ijrmms.2019.104190
- Posiva Oy, (2024). Introducing ONKALO and its principle of operation, https://www.posiva.fi/en/index/news/pressreleasesstockexchangereleases/2024/thisisonkaloandthisishowitworks.html (Accessed 25.06.2025)
