7th International Scientific Conference Modern Trends in Agricultural Production, Rural Development and Environmental Protection (2025) [pp. 211-221]
AUTHOR(S) / АУТОР(И): Vera Karličić
, Merima Makaš, Milica Ćopić
, Iva Atanasković
, Igor Kljujev
, Monika Stojanova
, Blažo Lalević 
Download Full Pdf 
DOI: 10.46793/7thMTAgricult.20K
ABSTRACT / САЖЕТАК:
Sewage sludge is a by-product of wastewater treatment. Sewage sludge is a desirable material for application in agriculture production as a fertilizer or soil conditioner, as it is characterized by a high content of organic matter and nutrients such as nitrogen, phosphorus and potassium. However, sewage sludge tends to concentrate trace metals, organic pollutants and pathogenic organisms due to the initial pollutant load of the treated wastewater and the treatment processes. Although various chemical methods can be used to remove trace metals from sewage sludge, the use of microbes is considered a more cost-effective and environmentally friendly approach compared to chemical treatments. This review examines the risks of trace metals in the application of sewage sludge and demonstrates the efficiency of their removal using physical, chemical and biological methods.
KEYWORDS / КЉУЧНЕ РЕЧИ:
municipal sewage sludge, chemical risks, trace metals, bioleaching.
ACKNOWLEDGEMENT / ПРОЈЕКАТ:
This research was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (contract No. 451-03-137/2025-03/200116) and Science Fund of the Republic of Serbia, #GRANT No. 14983, Design and application of microbial consortium for composting and treatment of sewage sludge – Micro-composst.
REFERENCES / ЛИТЕРАТУРА:
- Achkir, A., Aouragh, A., El Mahi, M., Lotfi, E.M., Labjar, N., El Bouch, M., Ouahidi, M.L., Badza, T., Farhane, H., & El Moussaoui, T. (2023). Implication of sewage sludge increased application rates on soil fertility and heavy metals contamination risk. Emerging Contaminants, 9(1), 100200.
- Adetunji, A.I., & Erasmus, M. (2024). Unraveling the potentials of extremophiles in bioextraction of valuable metals from industrial solid wastes: an overview. Minerals, 14, 861.
- Arana Juve, J.M., Munk, F., Christensen, S., Wang, Y., & Wei, Z. (2022). Electrodialysis for metal removal and recovery: A review. Chemical Engineering Journal, 435, 134857.
- Azhdarpoor, A., Hoseini, R., & Dehghani, M. (2019). Removal of heavy metals from urban sewage sludge using acidophilic Thiobacillus ferrooxidans. Journal of Health, 10(2), 169–178.
- Babel, S., & Dacera, D.D.M. (2006). Heavy metal removal from contaminated sludge for land application: a review. Waste Management, 26, 988–1004.
- Bakan, B., Bernet, N., Bouchez, T., Boutrou, R., Choubert, J.M., Dabert, P., Duquennoi, C., Ferraro, V., Garcia-Bernet, D., Gillot, S., & Mery, J. (2022). Circular economy applied to organic residues and wastewater: research challenges. Waste and Biomass Valorization, 13(2), 1267–1276.
- Banat, I.M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M.G., Fracchia, L., Smyth, T.J., & Marchant, R. (2010). Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology, 87, 427–444.
- Belhaj, D., Elloumi, N., Jerbi, B., Zouari, M., Abdallah, F.B., Ayadi, H., & Kallel, M. (2016). Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus). Environmental Science and Pollution Research International, 23(20), 20168–20177.
- Bhaskar, S., Rashmi Shree, K.N., Apoorva, K.V., & Sreenivasa, M.Y. (2024). Adsorption – Advanced oxidation process (AAOP) for the heavy metals and organic matter removal from leachate using combined filtration -Fenton’s and Photo-Fenton’s treatment. Journal of Environmental Management, 371, 123009.
- Blaszczyk, W., Siatecka, A., Tlustoš, P., & Oleszczuk, P. (2024). Occurrence and dissipation mechanisms of organic contaminants during sewage sludge anaerobic digestion: A critical review. Science of the Total Environment, 945, 173517.
- Brandl, H. (2022). Application of microorganisms in bioleaching of heavy metals. Clinical Microbiology, 11, 298.
- Brienza., M., & Katsoyiannis, I.A. (2017). Sulfate radical technologies as tertiary treatment for the removal of emerging contaminants from wastewater. Sustainability, 9, 1604.
- Camargo, F.P., do Prado, P.F, Tonello, P.S., Dos Santos, A.C.A., & Silveira Duarte, I.C. (2018). Bioleaching of toxic metals from sewage sludge by co-inoculation of Acidithiobacillus and the biosurfactant-producing yeast Meyerozyma guilliermondii. Journal of Environmental Management, 211, 28–35.
- Camargo, F.P., Tonello, P.S., dos Santos, A.C.A, & Duarte, I.C.S. (2016). Removal of toxic metals from sewage sludge through chemical, physical, and biological treatments-a review. Water Air Soil Pollution, 227, 433.
- Cerrillo-Gonzalez, M.D.M., Villen-Guzman, M., Rodriguez-Maroto, J.M., & Paz-Garcia, J.M. (2024). Metal recovery from wastewater using electrodialysis separation. Metals, 14, 38.
- Chen, S-Y., & Wang, S-Y. (2019). Effects of solid content and substrate concentration on bioleaching of heavy metals from sewage sludge using Aspergillus niger. Metals, 9, 994.
- Choi, J.M., Han, S.K., & Lee, C.Y. (2018). Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment. Bioresource Technology, 259, 207–213.
- Czuprynski, P., & Bajda, T. (2022). An assessment of an ion exchange resin system for the removal and recovery of Ni, Hg, and Cr from wet flue gas desulphurization wastewater—a pilot study. RSC Advances, 12, 5145–5156.
- Deng, J., Feng, X., & Qiu, X. (2009). Extraction of heavy metal from sewage sludge using ultrasound-assisted nitric acid. Chemical Engineering Journal, 152, 177–182.
- Directive 2009/28/EC of the European Parliament and of the Council (2009). Official Journal of the European Union, L 140/16.
- Directive 91/271/EEC: Council directive of 21 May 1991 concerning urban waste water treatment. Official Journal of the European Union, L 135, p. 40.
- Dong, B., Liu, X., Dai, L., & Dai, X. (2013). Changes of heavy metal speciation during high-solid anaerobic digestion of sewage sludge. Bioresource Technology, 131, 152–158.
- EUROSTAT (2024): Sewage sludge production and disposal from urban wastewater (in dry substance (d.s)).
- Gaber, S.E., Rizk, M.S., & Yehia, M.M. (2011). Extraction of certain heavy metals from sewage sludge using different types of acids. Biokemistri, 23(1), 41–48.
- Gao, J., Luo, Q-S., Zhu, J., Zhang, C-B., & Li B-Z. (2013). Effects of electrokinetic treatment of contaminated sludge on migration and transformation of Cd, Ni and Zn in various bonding states. Chemosfere, 93(11), 2869–2876.
- Geng, H., Xu, Y., Zheng, L., Gong, H., Dai, L., & Dai, X. (2020). An overview of removing heavy metals from sewage sludge: Achievements and perspectives. Environmental Pollution, 266(2), 115375.
- Ghavidel, A., Rad, S.N., Alikhani, H.A., Sharari, M., & Ghanbari, A. (2018). Bioleaching of heavy metals from sewage sludge, direct action of Acidithiobacillus ferrooxidans or only the impact of pH? Journal of Material Cycles and Waste Management, 20, 1179–1187.
- Gusiatin, M.Z., Kulikowska, D., & Bernat, K. (2024). Municipal sewage sludge as a resource in the circular economy. Energies, 17, 2474.
- Hu, J., Zhang, L., Yu, Y., Lian, C., & Sang, Y. (2023). Selective extraction of heavy metals from sewage sludge via combined process of acid leaching and ion exchange resins adsorption: Optimization and performance evaluation. Separation Science and Technology, 58(10), 1172–1183.
- Hu, J., Zhao, J., Zheng, X., Li, S., Lv, Q., & Liang, C. (2022). Removal of heavy metals from sewage sludge by chemical leaching with biodegradable chelator methyl glycine diacetic acid. Chemosphere, 300, 134496.
- Hutchins, S.R., Davidson, M.S., Brierley, J.A., & Brierley, C.L. (1986). Microorganisms in reclamation of metals. Annual Review of Microbiology, 40, 311–336.
- Ito, A., Takahashi, K., Suzuki, J., & Umita, T. (2013). Heavy metal removal and phos phorus retention using the Fenton process for sustainable recycling of anaer obically digested sewage sludge. Journal of Water Environmental Technology, 11(4), 309–318.
- Kamizela, T., & Worwag, M. (2020). Processing of water treatment sludge by bioleaching. Energies, 13, 6539.
- Lee, B.H., & Khor, S.M. (2023). Biodegradation for metal extraction. In: G.A.M. Ali, A.S.H. Makhlouf (Eds.), Handbook of biodegradable materials (pp.1533-1567). Springer, Cham.
- Li, H., Ye, M.,Zheng, L., Xu, Y., Sun, S., Du, Q., Zhong, Y., Ye, S., & Zhang, D. (2018). Optimization of kinetics and operating parameters for the bioleaching of heavy metals from sewage sludge, using co-inoculation of two Acidithiobacillus species. Water Science and Technology, 2017(2), 390–403.
- Lombardi, A.T., & Garcia, O. (2002). Biological leaching of Mn, Al, Zn, Cu and Ti in an anaerobic sewage sludge effectuated by Thiobacillus ferrooxidans and its effect on metal partitioning. Water Research, 36(13), 3193–3202.
- Ma, D., Su, M., Qian, J., Wang, Q., Meng, F., Ge, X., Ye, Y., & Song, C (2020). Heavy metal removal from sewage sludge under citric acid and electroosmotic leaching processes. Separation and Purification Technology, 242, 116822.
- Mahmud, H.N.M.E., Obidul Huq, A.O., & binti Yahya, R. (2016). The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole – based adsorbents: a review. RSC Advances, 6(18), 14778–14791.
- Mo, R., Huang, S., Dai, W., Liang, J., & Sun, S. (2015). A rapid Fenton treatment technique for sewage sludge dewatering. Chemical Engineering Journal, 269, 391–398.
- Molaey, R., Appels, L., Yesil, H., Evren Tugtas, A., & Çalli, B. (2024). Sustainable heavy metal removal from sewage sludge: A review of bioleaching and other emerging technologies. Science of the Total Environment, 955, 177020.
- Morales Arteaga, J.F., Kaurin, A., & Lestan, D. (2022). Removal of toxic metals from sewage sludge by EDTA in a closed-loop washing process. Chemosphere, 307(2), 135917.
- Muter, O., Dubova, L., Kassien, O., Cakane, J., & Alsina, I. (2022). Application of sewage sludge in agriculture: soil fertility, technoeconomic, and life-cycle assessment. In: R.B. Jeyakumar, K. Sankarapadian, Y.K. Ravi (Eds.), Hazardous Waste Management (p. 26). IntechOpen.
- Neri, A., Rizzuni, A., Garrone, P., & Cagno, E. (2024). Influence of policymakers and civil society stakeholders on sewage sludge management strategies: Empirical results from European utilities. Journal of Environmental Management, 364, 121396.
- Nyamangara, J., & Mzezewa, J. (2001). Effect of long-term application of sewage sludge to a grazed grass pasture on organic carbon and nutrients of a clay soil in Zimbabwe. Nutrient Cycling in Agroecosystems, 59, 13–18.
- Nyamato, G.S. (2023). Perspectives and prospects of chelation extraction of heavy metals from wastewater: A review. Water Science and Technology, 88(1), 47–61.
- Pathak, A., Dastidar, M.G., & Sreekrishnan, T.R. (2009). Bioleaching of heavy metals from sewage sludge: A review. Journal of Environmental Management, 90(8), 2343–2353.
- Regulation (EU) 2019/1009 of the European Parliament and of the Council (2019). Official Journal of the European Union, L 170/1.
- Ren, X., Yan, R., Wang, H., Kou, Y., Chae, K., Kim, I.S., Park, Y., & Wang, A., (2015). Citric acid and ethylene diamine tetra-acetic acid as effective washing agents to treat sewage sludge for agricultural reuse. Waste Management, 46, 440–448.
- Sedighi, M., Behvand Usefi, M.M., Ismail, A.F., & Ghasemi, M. (2023). Environmental sustainability and ions removal through electrodialysis desalination: Operating conditions and process parameters. Desalination, 549, 116319.
- Shahid, M.K., Dayarathne, H.N.P., Mainali, B., Lim, J. W., & Choi, Y. (2023). Ion exchange process for removal of microconstituents from water and wastewater. In: R. Surampalli, T. Zhang, C-M. Kao, M. Ghangrekar, P. Bhunia, M. Behera, P. Rout (Eds.), Microconstituents in the environment: occurrence, fate, removal and management. (pp. 303–320). Wiley.
- Shi, W., Healy, M.G., Ashekuzzaman, S.M., Daly, K., Leahy, J.J., & Fenton, O. (2021). Dairy processing sludge and co-products: a review of present and future re-use pathways in agriculture. Journal of Cleaner Production, 314, 128035.
- Sivapullaiah, P.V., Prakash, B.S.N., & Suma, B.N. (2015). Electrokinetic removal of heavy metals from soil. Journal of Electrochemical Science and Engineering, 5(1), 47–65.
- Srichandan, H., Mohapatra, R.K., Parhi, P.K., & Mishra, S. (2019). Bioleaching approach for extraction of metal values from secondary solid wastes: a critical review. Hydrometallurgy, 189, 105122.
- Sun, Z., Zhao, M., Chen, L., Gong, Z., Hu, J., & Ma, D. (2023). Electrokinetic remediation for the removal of heavy metals in soil: Limitations, solutions and prospection. Science of the Total Environment, 903, 165970.
- Tang, J., He, J., Xin, X., Hu, H., Liu, T. (2018). Biosurfactants enhanced heavy metals removal from sludge in the electrokinetic treatment. Chemical Engeneering Journal, 334, 2579–2592.
- Tezyapar Kara, I., Kremser, K., Wagland, S.T., & Coulon, F. (2023). Bioleaching metal‑bearing wastes and by‑products for resource recovery: a review. Environmental Chemistry Letters, 21, 3329–3350.
- Tonietti, L., Esposito, M., Cascone, M., Barosa, B., Fiscale, S., Muscari Tomajoli, M.T., Sbaffi, T., Santomartino, R., Covone, G., Cordone, A., Rotundi, A., & Giovannelli, D. (2024). Unveiling the bioleaching versatility of Acidithiobacillus ferrooxidans. Microorganisms, 12(12), 2407.
- Tuncal, T., & Mujumdar, A.S. (2022). Modern techniques for sludge dewaterability improvement. Drying Technology, 41(3), 339–351.
- Tytła, M. (2019). Assessment of heavy metal pollution and potential ecological risk in sewage sludge from municipal wastewater treatment plant located in the most industrialized region in Poland-case study. International Journal of Environmental Research and Public Health, 16, 2430.
- Tytła, M., & Widziewicz-Rzonca, K. (2021). Heavy metals in municipal sewage sludge – a brief characteristic of potential threats and methods used to assess the ecological risk. Environment, Earth and Ecology, 5, 18–25.
- Valchev, D., Ribarova, I., Borisov, B., Radovanov, V., Lyubomirova, V., Kostova, I., Dimova, G., Karpuzova, O., & Lazarova, S. (2024). Valuable elements in sludge from eight municipal wastewater treatment plants in relation to their recovery potential. Environmental Science Europe, 36(1), 11.
- Valdes, J., Pedroso, I., Quatrini, R., Dodson, R.J., Tettelin, H., Blake II, R., Eisen, J.A., & Holmes, D.S. (2008). Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics, 9, 597.
- Vera, M., Schippers, A., Hedrich, S., & Sand, W. (2022). Progress in bioleaching: fundamentals and mechanisms of microbial metal sulfide oxidation – part A. Applied Microbiology and Biotechnology, 106, 6933–6952.
- Wang, Q., Long, H., Wang, H., & Lau Vetter, M.C.Y. (2024). Characterize the growth and metabolism of Acidithiobacillus ferrooxidans under electroautotrophic and chemoautotrophic conditions. Microorganisms, 12, 590.
- Wang, J.Y., Zhang, D.S., Stabnikova, O., & Tay, J.H. (2005). Evaluation of electrokinetic removal of heavy metals from sewage sludge. Journal of Hazardous Materials, 124(1–3), 139–146.
- Wen, Y.M., Cheng, Y., Tang, C., & Chen, Z.L. (2013). Bioleaching of heavy metals from sewage sludge using indigenous iron-oxidizing microorganisms. Journal of Soils and Sediments, 13, 166–175.
- Willner, J., & Fornalczyk, A. (2020). Application of biological method for removing selected heavy metals from sewage sludge. Physicochemical Problems of Mineral Processing, 52(6), 387–395.
- Wołowicz, A., & Wawrzkiewicz, M. (2021). Screening of ion exchange resins for hazardous Ni(II) removal from aqueous solutions: kinetic and equilibrium batch adsorption method. Processes, 9, 285.
- Wong, J.W.C., & Gu, X.Y. (2008). Optimization of Fe2+/solids content ration for a novel sludge heavy metal bioleaching process. Water Science and Technology, 57, 445–450.
- Wong, J.W.C., Xiang, L., & Chan, L.C. (2002). pH requirement for the bioleaching of heavy metals from anaerobically digested wastewater sludge. Water, Air, Soil Pollution, 138(1–4), 25–35.
- Wu, W., Liu, X., Zhang, X., Zhu, M., & Tan, W. (2018). Bioleaching of copper from waste printed circuit boards by bacteria-free cultural supernatant of iron–sulfur-oxidizing bacteria. Bioresources and Bioprocessing, 5, 10.
- Xu, Y., & Feng, Y-Y. (2016). Feasibility of sewage sludge leached by Aspergillus niger in land utilization. Polish Journal of Environmental Studies, 25(1), 405–412.
- Xu Y., Zhang C., Zhao M., Rong H., Zhang K., & Chen Q. (2017). Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge. Chemosphere, 168, 1152–1157.
- Yang, L., Zhao, D., Yang, J., Wang, W., Chen, P., Zhang, S., & Yan, L. (2019). Acidithiobacillus thiooxidans and its potential application. Applied Microbiology and Biotechnology, 103, 7819–7833.
- Youssef, N.H., Al-Huqail, A.A., Ali, H.M., Abdelsalam, N.R., & Sabra, M.A. (2020). The role of Serendipita indica and Lactobacilli mixtures on mitigating mycotoxins and heavy metals’ risks of contaminated sewage sludge and its composts. Scientific Reports, 10, 15159.
- Yue, T., Yang, Y., Li, L., Su, M., Wang, M., Liao, Y., Jia, L., & Chen, S. (2023). Application prospect of anaerobic reduction pathways in Acidithiobacillus ferrooxidans for mine tailings disposal: a review. Minerals, 13, 1192.
- Zakaria, K.K., Farag, H.A. & El-Gayar, D.A. (2023). Removal of Cu2+, Fe2+ and SO42− ions from industrial wastewater by ion exchange resins contained in a rotating perforated cylindrical basket of different heights. Scientific Reports, 13, 3248.
- Zhang, B., Zhou, X., Ren, X., Hu, X., & Ji, B. (2023). Recent research on municipal sludge as soil fertilizer in China: a review. Water Air Soil Pollution, 234, 119.
- Zheng, J., Qiu, C., Wang, C., Zhao, J., Wang, D., Liu, N., Wang, S., Yu, J., & Sun, L. (2021). Influence of thermal hydrolysis treatment on chemical speciation and bioleaching behavior of heavy metals in the sewage sludge. Water Science and Technology, 83(2), 372-380.
- Zhu, Y., Zeng, G., Zhang, P., Zhang, C., Ren, M., Zhang, J., & Chen, M. (2013). Feasibility of bioleaching combined with Fenton like reaction to remove heavy metals from sewage sludge. Bioresource Technology, 142, 530–534.