XXIX kongres DIMK i X kongres SIGP sa Međunarodnim simpozijumom o istraživanjima i primeni savremenih dostignuća u građevinarstvu u oblasti materijala i konstrukcija (2025) [pp. 100-107]
AUTHOR(S) / АУТОР(И): Olivera Bedov
, Suzana Draganić
, Marijana Serdar
, Mirjana Malešev 
Download Full Pdf 
DOI: 10.46793/29DIMK.100B
ABSTRACT / САЖЕТАК:
Alkali-activated materials (AAMs) are alternative binders with no cement in their composition. They are synthesized from aluminosilicate-rich precursors and alkaline activators – usually hydroxides and silicates. They significantly contribute to the overall CO2 footprint of AAMs, leading to efforts to replace them with alternative alkali-rich waste materials such as agricultural biomass ashes. The paper presents the comparison of slag-based mortars activated with sunflower husk ash (SHA) – a locally available waste material in the Autonomous Province of Vojvodina, Serbia, and KOH and NaOH. The influence of SHA on the mortars was assessed by comparing the 7- and 28-day compressive strength.
KEYWORDS / КЉУЧНЕ РЕЧИ:
alkali-activated materials, sunflower husk ash, blast furnace slag, agricultural biomass ash, alternative activator, sustainability
ACKNOWLEDGEMENT / ПРОЈЕКАТ:
This research has been supported by the Ministry of Science, Technological Development and Innovation (Contract No. 451-03-137/2025-03/200156) and the Faculty of Technical Sciences, University of Novi Sad through project “Scientific and Artistic Research Work of Researchers in Teaching and Associate Positions at the Faculty of Technical Sciences, University of Novi Sad 2025” (No. 01-50/295).
REFERENCES / ЛИТЕРАТУРА:
- Provis JL, Bernal SA. Geopolymers and Related Alkali-Activated Materials. Annu Rev Mater Res 2014;44:299–327. https://doi.org/10.1146/annurev-matsci-070813-113515.
- Provis JL, van Deventer JSJ, editors. Alkali Activated Materials – State of the Art Report TC 224-AAM. vol. 13. Dordrecht: Springer Netherlands; 2014. https://doi.org/10.1007/978-94-007-7672-2.
- Shi C, Krivenko PV, Roy D. Alkali Activated Cements and Concretes. Oxon, UK: Taylor&Francis; 2006.
- Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A. Crucial insights on the mix design of alkali-activated cement-based binders. Handbook of Alkali-Activated Cements, Mortars and Concretes, Elsevier; 2015, p. 49–73. https://doi.org/10.1533/9781782422884.1.49.
- Bondar D, Ma Q, Soutsos M, Basheer M, Provis JL, Nanukuttan S. Alkali activated slag concretes designed for a desired slump, strength and chloride diffusivity. Construction and Building Materials 2018;190:191–9. https://doi.org/10.1016/j.conbuildmat.2018.09.124.
- Segura IP, Luukkonen T, Yliniemi J, Sreenivasan H, Damø AJ, Jensen LS, et al. Comparison of One-Part and Two-Part Alkali-Activated Metakaolin and Blast Furnace Slag. J Sustain Metall 2022;8:1816–30. https://doi.org/10.1007/s40831-022-00606-9.
- Komkova A, Habert G. Environmental impact assessment of alkali-activated materials: Examining impacts of variability in constituent production processes and transportation. Construction and Building Materials 2023;363:129032. https://doi.org/10.1016/j.conbuildmat.2022.129032.
- Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel 2013;105:40–76. https://doi.org/10.1016/j.fuel.2012.09.041.
- Font A, Soriano L, Moraes JCB, Tashima MM, Monzó J, Borrachero MV, et al. A 100% waste-based alkali-activated material by using olive-stone biomass ash (OBA) and blast furnace slag (BFS). Materials Letters 2017;203:46–9. https://doi.org/10.1016/j.matlet.2017.05.129.
- de Moraes Pinheiro SM, Font A, Soriano L, Tashima MM, Monzó J, Borrachero MV, et al. Olive-stone biomass ash (OBA): An alternative alkaline source for the blast furnace slag activation. Construction and Building Materials 2018;178:327–38. https://doi.org/10.1016/j.conbuildmat.2018.05.157.
- Soriano L, Font A, Tashima MM, Monzó J, Borrachero MV, Bonifácio T, et al. Almond-shell biomass ash (ABA): A greener alternative to the use of commercial alkaline reagents in alkali-activated cement. Construction and Building Materials 2021;290:123251. https://doi.org/10.1016/j.conbuildmat.2021.123251.
- Omur T, Kanat D, Kabay N. Innovative use of hazelnut shell ash as an alkali activator: A comparative analysis with commercial activators. Journal of Building Engineering 2024;90:109466. https://doi.org/10.1016/j.jobe.2024.109466.
- Wang K, Tester JW. Sustainable management of unavoidable biomass wastes. Green Energy and Resources 2023;1:100005. https://doi.org/10.1016/j.gerr.2023.100005.
- Bukvic O, Malešev M, Serdar M, Draganić S, Radonjanin V. Feasibility of using sunflower husk ash as an alternative activator for alkali-activated slag, Skopje: MASE – Macedonian Association of Structural Engineers = DGKM – Društvo na gradežnite konstruktori na Makedonija; 2023.
- Zhu Z, Xu X, Liu R, Liu P, Tang H, Gong Y, et al. Feasibility study of highly alkaline biomass ash to activate alkali-activated grouts. Construction and Building Materials 2023;393:132067. https://doi.org/10.1016/j.conbuildmat.2023.132067.
- Zhu Z, Zhang C, Liu R, Li S, Wang M. Sunflower straw ash as an alternative activator in alkali-activated grouts: A new 100% waste-based material. Ceramics International 2023;49:32308–12. https://doi.org/10.1016/j.ceramint.2023.06.306.
- Bedov O, Andabaka A, Draganić S. Turning Agricultural Biomass Ash into a Valuable Resource in the Construction Industry—Exploring the Potential of Industrial Symbiosis. Buildings 2025;15:273. https://doi.org/10.3390/buildings15020273.
- Bukvić O, Malešev M, Draganić S, Serdar M, Radonjanin V. VALORISATION OF SUNFLOWER HUSK ASH: THE INFLUENCE ON MICROSTRUCTURE AND COMPRESSIVE STRENGTH OF ALKALI-ACTIVATED SLAG MORTARS, Novi Sad, Serbia: 2023.
- EN 196-1: 2016 – Methods of testing cement – Part 1: Determination of strength 2016.
- Soriano L, Font A, Tashima MM, Monzó J, Borrachero MV, Payá J. One-part blast furnace slag mortars activated with almond-shell biomass ash: A new 100% waste-based material. Materials Letters 2020;272:127882. https://doi.org/10.1016/j.matlet.2020.127882.