OXIDO-REDUCTIVE BALANCE AND GENOME DAMAGE IN ONION (Allium cepa L.) ROOT CELLS EXPOSED TO BISPHENOL A

8th WORKSHOP: FOOD AND DRUG SAFETY AND QUALITY, (pp. 49–56)

 

АУТОР / AUTHOR(S): A-M. Domijan , M. Gerić , B. Žegura , G. Gajski 

Download Full Pdf  

DOI: 10.46793/8FDSQ.ILB2AD

САЖЕТАК / ABSTRACT:

The aim of this study was to test the toxicity and mechanism of toxicity of bisphenol A (BPA) using onion (Allium cepa L.) as a test model. Onions were divided into six groups (each consisting of 10 bulbs) and exposed to BPA (1-50 mg/L) or de-water (control) for 72 h. Upon exposure to BPA, onion roots were collected, and parameters of phytotoxicity, oxidative stress, and genotoxicity were assessed. The decrease in root growth and in the mitotic index was observed already after exposure to BPA at a concentration of 1 mg/L. BPA reduced the level of glutathione and increased the activity of superoxide dismutase. Additionally, BPA increased the production of reactive oxygen species, malondialdehyde, and protein carbonyls, as well as the frequency of micronuclei and nuclear buds. Thus, BPA phytotoxicity can be linked to changes in oxido-reductive balance and genome damage. Since humans can be exposed to BPA through the food chain, BPA presence in the environment should be controlled.

КЉУЧНЕ РЕЧИ / KEYWORDS:

ПРОЈЕКАТ / ACKNOWLEDGEMENT:

This work was conducted as part of a bilateral collaboration between Slovenia and Croatia (BI-HR/18-19-003; BI-HR/20-21-031). The study received financial support from the University of Zagreb and the Institute for Medical Research and Occupational Health.

ЛИТЕРАТУРА / REFERENCES: 

[1] R. Naomi, M.D. Yazid, H. Bahari, Y.Y. Keong, R. Rajandram, H. Embong, S.H. Teoh, S. Halim, F. Othman, International Journal of Molecular Sciences, 2022, 23, 2969.

[2] M.R. Burkhardt, R.C. ReVello, S.G. Smith, S.D. Zaugg, Analytica Chimica Acta, 2005, 534, 89–100

[3] S.M. Arnold, K.E.Clark, C.A. Staples, G.M. Klecka, S.S. Dimond, N. Caspers, S.G. Hentges. J Expo Sci Environ Epidemiol 2013, 23, 134-144.

[4] I. Ali, B. Liu, M.A. Farooq, F. Islam, A. Azizullah, C. Yu, W. Su, Y. Gan, Ecotoxicology and Environmental Safety, 2016, 124, 277–284.

[5] WHO, Toxicological and health aspects of bisphenol A. Ottawa, Canada, 2010.

[6] I. Cimmino, F. Fiory, G. Perruolo, C. Miele, F. Beguinot, P. Formisano, F. Oriente, International Journal of Molecular Sciences, 2020, 21, 5761.

[7] G.J. Nohynek, C.J. Borgert, D. Dietrich, K.K. Pozman. Toxicology Letters, 2013, 223, 295-305.

[8] EFSA, European Food Safety Authority, EFSA Journal, 2010, 8, 1829.

[9] G. Fiskesjö, Environ Toxicol Water, 1993, 8, 291–298.

[10] G. Fiskesjö, in: W. Wang, J.W. Gorsuch, J.S. Hughes (Eds), Lewis Publishers, New York, 1997, pp. 308–333.

[11] D.M. Leme, M.A. Marin-Morales, Mutation Research, 2009, 682, 71–81.

[12] I. Duka, M. Gerić, G. Gajski, M. Friščić, Ž. Maleš, A-M. Domijan, P. Turčić, Journal of Environmental Science and Health, Part A, 2019, DOI: 10.1080/10934529.2019.1687236

[13] S. Radić Brkanac, M. Gerić, G. Gajski, V. Vujčić, V. Garaj-Vrhovac, D. Kremer, A-M. Domijan, Regulatory Toxicology and Pharmacology, 2015, 73, 923-929.

[14] A-M. Domijan, J. Ralić, S. Radić Brkanac, L. Rumora, T. Žanić-Grubišić, 2015, 29, 41-46.

[15] R.L. Levine, D. Garland, C.N. Oliver, A. Amici, I. Climent, A.G. Lenz, B.W. Ahn, S. Shaltiel, E.R. Stadtman, Methods in Enzymology, 1990, 86, 464–478.

[16] S. Siddiqiui, S.A. Muhammad Al Amri, H. Ahmed Al Ghamdy, A.A. Alqahtani, S. Mohammed Alquyr, H.M. Yassin, Caryologiy, 2021, 72, 103-109.

[17] J. Zhang, X. Li, L. Zhou, L. Wang, Q. Zhou, X. Huang, Scientific Reports 2016, 6:23782 DOI: 10.1038/srep23782.

[18] C. Xiao, L. Wang, Q. Zhou, X. Huang, Journal of Hazard Materials, 2020, 384, 121488.